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1 Introduction

The core of the Vienna RNA Package is formed by a collection of routines for the prediction
and comparison of RNA secondary structures. These routines can be accessed through stand-
alone programs, such as RNAfold, RNAdistance etc., which should be sufficient for most users.
For those who wish to develop their own programs we provide a library which can be linked to
your own code.

This document only describes the library and will be primarily useful to programmers.
The stand-alone programs are described in separate man pages. The latest version of the
package including source code and html versions of the documentation can be found at
http://www.tbi.univie.ac.at/~ivo/RNA/ . This manual documents version 1.3.

Please send comments and bug reports to ivo@tbi.univie.ac.at.

http://www.tbi.univie.ac.at/~ivo/RNA/
http://www.tbi.univie.ac.at/~ivo/RNA/
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2 Folding Routines

2.1 Minimum free Energy Folding

The library provides a fast dynamic programming minimum free energy folding algorithm as
described by Zuker & Stiegler (1981). Associated functions are:

Functionfloat fold (char* sequence, char* structure)
folds the sequence and returns the minimum free energy in kcal/mol; the mfe structure in
bracket notation (see Section 3.1 [notations], page 8) is returned in structure. Sufficient
space for string of the same length as sequence must be allocated for structure before call-
ing fold(). If fold_constrained (see Section 2.4 [Variables], page 4) is 1, the structure
string is interpreted on input as a list of constraints for the folding. The characters “ | x <
> “ mark bases that are paired, unpaired, paired upstream, or downstream, respectively;
matching brackets “ ( ) “ denote base pairs, dots “.” are used for unconstrained bases.
Constrained folding works by assigning bonus energies to all structures compliing with the
constraint.

Functionfloat energy of struct (char* sequence, char* structure)
calculates the energy of sequence on the structure

Functionvoid initialize fold (int length)
allocates memory for folding sequences not longer than length; sets up pairing matrix and
energy parameters. Has to be called before the first call to fold().

Functionvoid free arrays ()
frees the memory allocated by initialize_fold().

Functionvoid update fold params ()
call this to recalculate the pair matrix and energy parameters after a change in folding
parameters like temperature (see Section 2.4 [Variables], page 4).

Prototypes for these functions are declared in ‘fold.h’.

2.2 Partition Function Folding

Instead of the minimum free energy structure the partition function of all possible structures
and from that the pairing probability for every possible pair can be calculated, using a dynamic
programming algorithm as described by McCaskill (1990). The following functions are provided:

Functionfloat pf fold (char* sequence, char* structure)
calculates the partition function Z of sequence and returns the free energy of the ensemble
F in kcal/mol, where F = −kT ln(Z). If structure is not a NULL pointer on input, it
contains on return a string consisting of the letters “ . , | { } ( ) “ denoting bases that are
essentially unpaired, weakly paired, strongly paired without preference, weakly upstream
(downstream) paired, or strongly up- (down-)stream paired bases, respectively. If fold_
constrained (see Section 2.4 [Variables], page 4) is 1, the structure string is interpreted on
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input as a list of constraints for the folding. The character “x“ marks bases that must be
unpaired, matching brackets “ ( ) “ denote base pairs, all other characters are ignored. Any
pairs conflicting with the constraint will be forbidden. This usually sufficient to ensure the
constraints are honored. If do_backtrack (see Section 2.4 [Variables], page 4) has been
set to 0 base pairing probabilities will not be computed (saving CPU time), otherwise
the pr[iindx[i]-j] (see Section 2.4 [Variables], page 4) will contain the probability that
bases i and j pair.

Functionvoid init pf fold (int length)
allocates memory for folding sequences not longer than length; sets up pairing matrix and
energy parameters. Has to be called before the first call to pf_fold().

Functionvoid free pf arrays (void)
frees the memory allocated by init_pf_fold().

Functionvoid update pf params (int length)
Call this function to recalculate the pair matrix and energy parameters after a change in
folding parameters like temperature (see Section 2.4 [Variables], page 4).

Prototypes for these functions are declared in ‘part_func.h’.

2.3 Inverse Folding

We provide two functions that search for sequences with a given structure, thereby inverting
the folding routines.

Functionfloat inverse fold (char* start, char* target)
searches for a sequence with minimum free energy structure target, starting with sequence
start. It returns 0 if the search was successful, otherwise a structure distance to target is
returned. The found sequence is returned in start. If give_up is set to 1, the function
will return as soon as it is clear that the search will be unsuccessful, this speeds up the
algorithm if you are only interested in exact solutions. Since inverse_fold() calls fold()
you have to allocate memory for folding by calling initialize_fold()

Functionfloat inverse pf fold (char* start, char* target)
searches for a sequence with maximum probability to fold into structure target using the
partition function algorithm. It returns -kT log(p) where p is the frequency of target in
the ensemble of possible structures. This is usually much slower than inverse_fold().
Since inverse_pf_fold() calls pf_fold() you have to allocate memory for folding by
calling init_pf_fold()

Variablechar *symbolset
The global variable char *symbolset points to the allowed bases, initially "AUGC". It can
be used to design sequences from reduced alphabets.

Prototypes for these functions are declared in ‘inverse.h’.
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2.4 Global Variables for the Folding Routines

The following global variables change the behavior the folding algorithms or contain addi-
tional information after folding.

Variableint noGU
do not allow GU pairs if equal 1; default is 0.

Variableint no closingGU
if 1 allow GU pairs only inside stacks, not as closing pairs; default is 0.

Variableint noLonelyPairs
Disallow all pairs which can only occur as lonely pairs (i.e. as helix of length 1). This
avoids lonely base pairs in the predicted structures in most cases.

Variableint tetra loop
include special stabilizing energies for some tetra loops; default is 1.

Variableint energy set
if 1 or 2: fold sequences from an artificial alphabet ABCD..., where A pairs B, C pairs D,
etc. using either GC (1) or AU parameters (2); default is 0, you probably don’t want to
change it.

Variablefloat temperature
rescale energy parameters to a temperature of temperature C. Default is 37C. You have
to call the update . . . params() functions after changing this parameter.

Variableint dangles
if set to 0 no stabilizing energies are assigned to bases adjacent to helices in free ends
and multiloops (so called dangling ends). Normally (dangles = 1) dangling end energies
are assigned only to unpaired bases and a base cannot participate simultaneously in two
dangling ends. In the partition function algorithm pf_fold() these checks are neglected.
If dangles is set to 2, the fold() and energy_of_struct() function will also follow this
convention. This treatment of dangling ends gives more favorable energies to helices di-
rectly adjacent to one another, which can be beneficial since such helices often do engage
in stabilizing interactions through co-axial stacking.
If dangles = 3 co-axial stacking is explicitely included for adjacent helices in mutli-loops.
The option affects only mfe folding and energy evaluation (fold() and energy_of_
struct()), as well as suboptimal folding via re-evaluation of energies. Co-axial stacking
with one intervening mismatch is not considered so far.
Default is 1, pf_fold() treats 1 as 2.

Variablechar* nonstandards
Lists additional base pairs that will be allowed to form in addition to GC, CG, AU, UA,
GU and UG. Nonstandard base pairs are given a stacking energy of 0.

Variablestruct bond { int i,j;} base pair
Contains a list of base pairs after a call to fold(). base_pair[0].i contains the total
number of pairs.



Chapter 2: Folding Routines 5

Variabledouble* pr
contains the base pair probability matrix after a call to pf_fold().

Variableint* iindx
index array to move through pr. The probability for base i and j to form a pair is in
pr[iindx[i]-j].

Variablefloat pf scale
a scaling factor used by pf_fold() to avoid overflows. Should be set to approximately
exp((−F/kT )/length), where F is an estimate for the ensemble free energy, for example
the minimum free energy. You must call update_pf_params() or init_pf_fold() after
changing this parameter. If pf scale is -1 (the default) , an estimate will be provided
automatically when calling init_pf_fold() or update_pf_params(). The automatic
estimate is usually insufficient for sequences more than a few hundred bases long.

Variableint fold constrained
If 1, calculate constrained minimum free energy structures. See Section 2.1 [mfe Fold],
page 2, for more information. Default is 0;

Variableint do backtrack
if 0, do not calculate pair probabilities in pf_fold(); this is about twice as fast. Default
is 1.

Variablechar backtrack type
only for use by inverse_fold(); ’C’: force (1,N) to be paired, ’M’ fold as if the sequence
were inside a multi-loop. Otherwise the usual mfe structure is computed.

include ‘fold_vars.h’ if you want to change any of these variables from their defaults.

2.5 Energy Parameter Files

A default set of parameters, identical to the one described in Mathews et.al. (1999), is
compiled into the library. Alternately, parameters can be read from and written to a file.

Functionvoid read parameter file (const char fname[])
reads energy parameters from file fname. See below for the format of the parameter file.

Functionvoid write parameter file (const char fname[])
writes current energy parameters to the file fname.

The following describes the file format expected by read_parameter_file(). All energies
should be given as integers in units of 0.01kcal/mol.

Various loop parameters depend in general on the pairs closing the loops, as well as unpaired
bases in the loops. Internally, the library distinguishes 8 types of pairs (CG=1, GC=2, GU=3,
UG=4, AU=5, UA=6, nonstandard=7, 0= no pair), and 5 types of bases (A=1, C=2, G=3, U=4
and 0 for anything else). Parameters belonging to pairs of type 0 are not listed in the parameter
files, but values for nonstandard pairs (type 7) and nonstandard bases (type 0) are. Thus, a table
for symmetric size 2 interior loops would have 7*7*5*5 entries (2 pairs, two unpaired bases).

The order of entries always uses the closing pair or pairs as the first indices followed by the
unpaired bases in 5’ to 3’ direction. To determine the type of a pair consider the base at 5’ end
of each strand first, i.e. use the pairs (i, j) and (q, p) for an interior loop with i<p<q<j . This
is probably better explained by an example. Consider the symmetric size 4 interior loop
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5’-GAUA-3’
3’-CGCU-5’

the first pair is GC, the second UA (not AU!) the unpaired bases are (in 5’ to 3’ direction,
starting at the first pair) A U C G. Thus we need entry [2,6,1,4,2,3] of the corresponding table.
Because the loop is symmetric you could equally well describe it by UA GC C G A U, i.e. entry
[6,2,2,3,1,4]. Be careful to preserve this symmetry when editing parameter tables!

The first line of the file should read
## RNAfold parameter file

lines of the form
# token
mark the beginning of a list of energy parameters of the type specified by token. The following
tokens are recognized:
# stack_energies
The list of free energies for stacked pairs, indexed by the two closing pairs. The list should be
formated as symmetric an 7*7 matrix,conforming to the order explained above. As an example
the stacked pair

5’-GU-3’ 5’-AC-3’
3’-CA-5’ 3’-UG-5’

corresponds to the entry [2,5], which should be identical to [5,2]. Note that the format has
changed from previous releases, to make it consistent with other loop parameters.
# stack_enthalpies
enthalpies for stacked pairs, used to rescale stacking energies to temperatures other than 37C.
Same format as stack energies.
# hairpin
Free energies of hairpin loops as a function of size. The list should contain 31 entries on one or
more lines. Since the minimum size of a hairpin loop is 3 and we start counting with 0, the first
three values should be INF to indicate a forbidden value.
# bulge
Free energies of bulge loops. Should contain 31 entries, the first one being INF.
# internal_loop
Free energies of internal loops. Should contain 31 entries, the first 4 being INF (since smaller
loops are tabulated).
# mismatch_interior
Free energies for the interaction between the closing pair of an interior loop and the two unpaired
bases adjacent to the helix. This is a three dimensional array indexed by the type of the closing
pair (see above) and the two unpaired bases. Since we distinguish 5 bases the list contains 8*5*5
entries and should be formated either as an 8*25 matrix or 8 5*5 matrices. The order is such
that for example the mismatch

5’-CU-3’
3’-GC-5’

corresponds to entry [1,4,2] (CG=1, U=4, C=2), (in this notation the first index runs from 1 to
7, second and third from 0 to 4)
# mismatch_hairpin
Same as above for hairpin loops.
# mismatch_enthalpies
Corresponding enthalpies for rescaling to temperatures other than 37C.
# int11_energies
Free energies for symmetric size 2 interior loops. 7*7*5*5 entries formated as 49 5*5 matrices,
or seven 7*25 matrices. Example:
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5’-CUU-3’
3’-GCA-5’

corresponds to entry [1,5,4,2], which should be identical to [5,1,2,4].
# int21_energies
Free energies for size 3 (2+1) interior loops. 7*7*5*5*5 entries formated in 5*5 or 5*25 matrices.
The strand with a single unpaired base is listed first, example:

5’-CU U-3’
3’-GCCA-5’

corresponds to entry [1,5,4,2,2].
# int22_energies
Free energies for symmetric size 4 interior loops. To reduce the size of parameter files this table
only lists canonical bases (A,C,G,U) resulting in a 7*7*4*4*4*4 table. See above for an example.
# dangle5
Energies for the interaction of an unpaired base on the 5’ side and adjacent to a helix in mul-
tiloops and free ends (the equivalent of mismatch energies in interior and hairpin loops). The
array is indexed by the type of pair closing the helix and the unpaired base and, therefore, forms
a 8*5 matrix. For example the dangling base in

5’-C-3’
3’-GC-5’

corresponds to entry [1,2] (CG=1, C=2);
# dangle3
Same as above for bases on the 3’ side of a helix.
# ML_params
For the energy of a multi-loop a function of the form E = cu*n_unpaired + ci*loop_degree
+ cc is used where n unpaired is the number of unpaired bases in the loop and loop degree is
the number of helices forming the loop. In addition a “terminal AU” penalty is applied to AU
and GU pairs in the loop. The line following the token should contain these four values, in the
order cu cc ci termAU. Ther terminal AU penalty is also used for the exterior loop and size 3
hairpins, for other loop types it is already included in the mismatch energies.
# Tetraloops
Some tetraloops particularly stable tetraloops are assigned an energy bonus. Up to forty
tetraloops and their bonus energies can be listed following the token, one sequence per line.
For example:

GAAA -200

assigns a bonus energy of -2 kcal/mol to tetraloops containing the sequence GAAA.
# END
Anything beyond this token will be ignored.

A parameter file need not be complete, it might may contain only a subset of interaction
parameters, such as only stacking energies. However, for each type of interaction listed, all
entries have to be present. A ‘*’ may be used to indicate entries of a list that are to retain their
default value. For loop energies a ‘x’ may be used to indicate that the value is to be extrapolated
from the values for smaller loop sizes. Parameter files may contain C-style comments, i.e. any
text between /* and */ will be ignored. However, you may have no more than one comment
per line and no multi-line comments.

A parameter file listing the default parameter set should accompany your distribution as
‘default.par’, the file ‘old.par’ contains parameters used in version 1.1b of the Package.
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3 Parsing and Comparing of Structures

3.1 Representations of Secondary Structures

The standard representation of a secondary structure is the “bracket notation”, where match-
ing brackets symbolize base pairs and unpaired bases are shown as dots. Alternatively, one may
use two types of node labels, ’P’ for paired and ’U’ for unpaired; a dot is then replaced by
’(U)’, and each closed bracket is assigned an additional identifier ’P’. We call this the expanded
notation. In Fontana et al. (1993) a condensed representation of the secondary structure is
proposed, the so-called homeomorphically irreducible tree (HIT) representation. Here a stack is
represented as a single pair of matching brackets labeled ’P’ and weighted by the number of base
pairs. Correspondingly, a contiguous strain of unpaired bases is shown as one pair of matching
brackets labeled ’U’ and weighted by its length. Generally any string consisting of matching
brackets and identifiers is equivalent to a plane tree with as many different types of nodes as
there are identifiers.

Bruce Shapiro (1988) proposed a coarse grained representation, which, does not retain the
full information of the secondary structure. He represents the different structure elements by
single matching brackets and labels them as ’H’ (hairpin loop), ’I’ (interior loop), ’B’ (bulge),
’M’ (multi-loop), and ’S’ (stack). We extend his alphabet by an extra letter for external elements
’E’. Again these identifiers may be followed by a weight corresponding to the number of unpaired
bases or base pairs in the structure element. All tree representations (except for the dot-bracket
form) can be encapsulated into a virtual root (labeled ’R’), see the example below.

The following example illustrates the different linear tree representations used by the package.
All lines show the same secondary structure.

a) .((((..(((...)))..((..)))).)).
(U)(((((U)(U)((((U)(U)(U)P)P)P)(U)(U)(((U)(U)P)P)P)P)(U)P)P)(U)

b) (U)(((U2)((U3)P3)(U2)((U2)P2)P2)(U)P2)(U)
c) (((H)(H)M)B)

((((((H)S)((H)S)M)S)B)S)
(((((((H)S)((H)S)M)S)B)S)E)

d) ((((((((H3)S3)((H2)S2)M4)S2)B1)S2)E2)R)

Above: Tree representations of secondary structures. a) Full structure: the first line shows
the more convenient condensed notation which is used by our programs; the second line shows
the rather clumsy expanded notation for completeness, b) HIT structure, c) different versions
of coarse grained structures: the second line is exactly Shapiro’s representation, the first line is
obtained by neglecting the stems. Since each loop is closed by a unique stem, these two lines
are equivalent. The third line is an extension taking into account also the external digits. d)
weighted coarse structure, this time including the virtual root.

For the output of aligned structures from string editing, different representations are needed,
where we put the label on both sides. The above examples for tree representations would then
look like:

a) (UU)(P(P(P(P(UU)(UU)(P(P(P(UU)(UU)(UU)P)P)P)(UU)(UU)(P(P(UU)(U...
b) (UU)(P2(P2(U2U2)(P2(U3U3)P3)(U2U2)(P2(U2U2)P2)P2)(UU)P2)(UU)
c) (B(M(HH)(HH)M)B)

(S(B(S(M(S(HH)S)(S(HH)S)M)S)B)S)
(E(S(B(S(M(S(HH)S)(S(HH)S)M)S)B)S)E)

d) (R(E2(S2(B1(S2(M4(S3(H3)S3)((H2)S2)M4)S2)B1)S2)E2)R)

Aligned structures additionally contain the gap character ’ ’.
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3.2 Parsing and Coarse Graining of Structures

Several functions are provided for parsing structures and converting to different representa-
tions.

Functionchar* expand Full (char* full)
converts the full structure from bracket notation to the expanded notation including root.

Functionchar* b2HIT (char* full)
converts the full structure from bracket notation to the HIT notation including root.

Functionchar* b2C (char* full)
converts the full structure from bracket notation to the a coarse grained notation using
the ’H’ ’B’ ’I’ ’M’ and ’R’ identifiers.

Functionchar* b2Shapiro (char* full)
converts the full structure from bracket notation to the weighted coarse grained notation
using the ’H’ ’B’ ’I’ ’M’ ’S’ ’E’ and ’R’ identifiers.

Functionchar* expand Shapiro (char* coarse)
inserts missing ’S’ identifiers in unweighted coarse grained structures as obtained from
b2C().

Functionchar* add root (char* any)
adds a root to an un-rooted tree in any except bracket notation.

Functionchar* unexpand Full (char* expanded)
restores the bracket notation from an expanded full or HIT tree, that is any tree using
only identifiers ’U’ ’P’ and ’R’.

Functionchar* unweight (char* expanded)
strip weights from any weighted tree.

All the above functions allocate memory for the strings they return.

Functionvoid unexpand aligned F (char* align[2])
converts two aligned structures in expanded notation as produced by tree_edit_
distance() function back to bracket notation with ’ ’ as the gap character. The result
overwrites the input.

Functionvoid parse structure (char* full)
Collects a statistic of structure elements of the full structure in bracket notation, writing
to the following global variables:

Variableint loop size[]
contains a list of all loop sizes. loop_size[0] contains the number of external bases.

Variableint loop degree[]
contains the corresponding list of loop degrees.
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Variableint helix size[]
contains a list of all stack sizes.

Variableint loops
contains the number of loops ( and therefore of stacks ).

Variableint pairs
contains the number of base pairs in the last parsed structure.

Variableint unpaired
contains the number of unpaired bases.

Prototypes for the above functions can be found in ‘RNAstruct.h’.

3.3 Distance Measures

A simple measure of dissimilarity between secondary structures of equal length is the base
pair distance, given by the number of pairs present in only one of the two structures being
compared. I.e. the number of base pairs that have to be opened or closed to transform one
structure into the other. It is therefore particularly useful for comparing structures on the same
sequence. It is implemented by

Functionint bp distance (char* s1, char* s2)
returns the “base pair” distance between two secondary structures s1 and s2, which should
have the same length.

For other cases a distance measure that allows for gaps is preferable. We can define distances
between structures as edit distances between trees or their string representations. In the case
of string distances this is the same as “sequence alignment”. Given a set of edit operations
and edit costs, the edit distance is given by the minimum sum of the costs along an edit path
converting one object into the other. Edit distances like these always define a metric. The edit
operations used by us are insertion, deletion and replacement of nodes. String editing does not
pay attention to the matching of brackets, while in tree editing matching brackets represent a
single node of the tree. Tree editing is therefore usually preferable, although somewhat slower.
String edit distances are always smaller or equal to tree edit distances.

The different level of detail in the structure representations defined above naturally leads to
different measures of distance. For full structures we use a cost of 1 for deletion or insertion of
an unpaired base and 2 for a base pair. Replacing an unpaired base for a pair incurs a cost of 1.

Two cost matrices are provided for coarse grained structures:
/* Null, H, B, I, M, S, E */

{ 0, 2, 2, 2, 2, 1, 1}, /* Null replaced */
{ 2, 0, 2, 2, 2, INF, INF}, /* H replaced */
{ 2, 2, 0, 1, 2, INF, INF}, /* B replaced */
{ 2, 2, 1, 0, 2, INF, INF}, /* I replaced */
{ 2, 2, 2, 2, 0, INF, INF}, /* M replaced */
{ 1, INF, INF, INF, INF, 0, INF}, /* S replaced */
{ 1, INF, INF, INF, INF, INF, 0}, /* E replaced */

/* Null, H, B, I, M, S, E */
{ 0, 100, 5, 5, 75, 5, 5}, /* Null replaced */
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{ 100, 0, 8, 8, 8, INF, INF}, /* H replaced */
{ 5, 8, 0, 3, 8, INF, INF}, /* B replaced */
{ 5, 8, 3, 0, 8, INF, INF}, /* I replaced */
{ 75, 8, 8, 8, 0, INF, INF}, /* M replaced */
{ 5, INF, INF, INF, INF, 0, INF}, /* S replaced */
{ 5, INF, INF, INF, INF, INF, 0}, /* E replaced */

The lower matrix uses the costs given in Shapiro (1990). All distance functions use the
following global variables:

Variableint cost matrix
if 0, use the default cost matrix (upper matrix in example); otherwise use Shapiro’s costs
(lower matrix).

Variableint edit backtrack
produce an alignment of the two structures being compared by tracing the editing path
giving the minimum distance.

Variablechar* aligned line[2]
contains the two aligned structures after a call to one of the distance functions with edit_
backtrack set to 1. See Section 3.1 [notations], page 8, for details on the representation
of structures.

3.3.1 Functions for Tree Edit Distances

FunctionTree* make tree (char* xstruc)
constructs a Tree ( essentially the postorder list ) of the structure xstruc, for use in
tree_edit_distance(). xstruc may be any rooted structure representation.

Functionfloat tree edit distance (Tree* T1, Tree* T2)
calculates the edit distance of the two trees T1 and T2.

Functionvoid free tree (Tree* t)
frees the memory allocated for t.

Prototypes for the above functions can be found in ‘treedist.h’. The type Tree is defined
in ‘dist_vars.h’, which is automatically included with ‘treedist.h’

3.3.2 Functions for String Alignment

FunctionswString* Make swString (char* xstruc)
converts the structure xstruc into a format suitable for string_edit_distance().

Functionfloat string edit distance (swString* T1, swString* T2)
calculates the string edit distance of T1 and T2.

Prototypes for the above functions can be found in ‘stringdist.h’.
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3.3.3 Functions for Comparison of Base Pair Probabilities

For comparison of base pair probability matrices, the matrices are first condensed into prob-
ability profiles which are the compared by alignment.

Functionfloat** Make bp profile (int length)
reads the base pair probability matrix pr (see Section 2.4 [Variables], page 4) and calcu-
lates a profile, i.e. a vector containing for each base the probabilities of being unpaired,
upstream, or downstream paired, respectively. The returned array is suitable for profile_
edit_distance.

Functionfloat profile edit distance (float** T1, float** T2)
calculates an alignment distance of the two profiles T1 and T2.

Functionvoid free profile (float** T)
frees the memory allocated for the profile T.

Prototypes for the above functions can be found in ‘profiledist.h’.
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4 Utilities

The following utilities are used and therefore provided by the library:

Functionint PS dot plot (char* sequence, char* filename)
reads base pair probabilities produced by pf_fold() from the global array pr and the
pair list base_pair produced by fold() and produces a postscript “dot plot” that is
written to filename. The “dot plot” represents each base pairing probability by a square
of corresponding area in a upper triangle matrix. The lower part of the matrix contains
the minimum free energy structure.

Functionint PS rna plot (char* sequence, char* structure, char* filename)
produces a secondary structure graph in PostScript and writes it to filename. Note that
this function has changed from previous versions and now expects the structure to be
plotted in dot-bracket notation as an argument. It does not make use of the global base_
pair array anymore.

Functionint gmlRNA (char* sequence, char* structure, char* filename, char
option)

produces a secondary structure graph in the Graph Meta Language gml and writes it to
filename. If option is an uppercase letter the sequence is used to label nodes, if option
equals ’X’ or ’x’ the resulting file will coordinates for an initial layout of the graph.

Variableint rna plot type
switches between different layout algorithms for drawing secondary structures in PS_rna_
plot and gmlRNA. Current possibility are 0 for a simple radial drawing or 1 for the modified
radial drawing taken from the naview program of Bruccoleri & Heinrich (1988).

Functionchar* random string (int l, char* symbols)
generates a “random” string of characters from symbols with length l.

Functionint hamming (char* s1, char* s2)
returns the number of positions in which s1 and s2 differ, the so called “Hamming”
distance. s1 and s2 should have the same length.

Functionunsigned char* pack structure (char* struc)
returns a binary string encoding the secondary structure struc using a 5:1 compression
scheme. The string is NULL terminated and can therefore be used with standard string
functions such as strcmp(). Useful for programs that need to keep many structures in
memory.

Functionchar* unpack structure (unsigned char* packed)
translate a compressed binary string produced by pack structure() back into the familiar
dot bracket notation.

Functionshort* make pair table (char* structure)
returns a newly allocated table, such that: table[i]=j if (i.j) pair or 0 if i is unpaired,
table[0] contains the length of the structure.

Functionchar* time stamp (void)
returns a string containing the current date in the format “Fri Mar 19 21:10:57 1993”.
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Functionvoid nrerror (char* message)
writes message to stderr and aborts the program.

Functiondouble urn ()
returns a pseudo random number in the range [0..1[, usually implemented by calling
erand48().

Variableunsigned short xsubi[3]
is used by urn (). These should be set to some random number seeds before the first call
to urn ().

Functionint int urn (int from, int to)
generates a pseudo random integer in the range [from, to].

Functionvoid* space (unsigned int size)
returns a pointer to size bytes of allocated and 0 initialized memory; aborts with an error
if memory is not available.

Functionchar* get line (FILE* fp)
reads a line of arbitrary length from the stream *fp, and returns a pointer to the resulting
string. The necessary memory is allocated and should be released using free() when the
string is no longer needed.

Prototypes for PS_rna_plot() and PS_dot_plot() reside in ‘PS_dot.h’, the other functions
are declared in ‘utils.h’.
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5 A Small Example Program

The following program exercises most commonly used functions of the library. The program
folds two sequences using both the mfe and partition function algorithms and calculates the tree
edit and profile distance of the resulting structures and base pairing probabilities.

#include <stdio.h>
#include <math.h>
#include "utils.h"
#include "fold_vars.h"
#include "fold.h"
#include "part_func.h"
#include "inverse.h"
#include "RNAstruct.h"
#include "treedist.h"
#include "stringdist.h"
#include "profiledist.h"

void main()
{

char *seq1="CGCAGGGAUACCCGCG", *seq2="GCGCCCAUAGGGACGC",
*struct1,* struct2,* xstruc;

float e1, e2, tree_dist, string_dist, profile_dist, kT;
Tree *T1, *T2;
swString *S1, *S2;
float **pf1, **pf2;

/* fold at 30C instead of the default 37C */
temperature = 30.; /* must be set *before* initializing */
/* allocate memory for fold(), could be skipped */
initialize_fold(strlen(seq1));

/* allocate memory for structure and fold */
struct1 = (char* ) space(sizeof(char)*(strlen(seq1)+1));
e1 = fold(seq1, struct1);

struct2 = (char* ) space(sizeof(char)*(strlen(seq2)+1));
e2 = fold(seq2, struct2);

free_arrays(); /* free arrays used in fold() */

/* produce tree and string representations for comparison */
xstruc = expand_Full(struct1);
T1 = make_tree(xstruc);
S1 = Make_swString(xstruc);
free(xstruc);

xstruc = expand_Full(struct2);
T2 = make_tree(xstruc);
S2 = Make_swString(xstruc);
free(xstruc);
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/* calculate tree edit distance and aligned structures with gaps */
edit_backtrack = 1;
tree_dist = tree_edit_distance(T1, T2);
free_tree(T1); free_tree(T2);
unexpand_aligned_F(aligned_line);
printf("%s\n%s %3.2f\n", aligned_line[0], aligned_line[1], tree_dist);

/* same thing using string edit (alignment) distance */
string_dist = string_edit_distance(S1, S2);
free(S1); free(S2);
printf("%s mfe=%5.2f\n%s mfe=%5.2f dist=%3.2f\n",

aligned_line[0], e1, aligned_line[1], e2, string_dist);

/* for longer sequences one should also set a scaling factor for
partition function folding, e.g: */

kT = (temperature+273.15)*1.98717/1000.; /* kT in kcal/mol */
pf_scale = exp(-e1/kT/strlen(seq1));
init_pf_fold(strlen(seq1));

/* calculate partition function and base pair probabilities */
e1 = pf_fold(seq1, struct1);
pf1 = Make_bp_profile(strlen(seq1));

e2 = pf_fold(seq2, struct2);
pf2 = Make_bp_profile(strlen(seq2));

free_pf_arrays(); /* free space allocated for pf_fold() */

profile_dist = profile_edit_distance(pf1, pf2);
printf("%s free energy=%5.2f\n%s free energy=%5.2f dist=%3.2f\n",

aligned_line[0], e1, aligned_line[1], e2, profile_dist);

free_profile(pf1); free_profile(pf2);
}

In a typical Unix environment you would compile this program using: cc -c example.c -
Ihpath and link using cc -o example -Llpath -lRNA -lm where hpath and lpath point to the
location of the header files and library, respectively.
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