
Apcupsd Linux UPS daemon version 3.10.6

Apcupsd 3.10.6 User's Manual

Last update to this manual 6 August 2003

Release Notes

Known Bugs•
New features in Apcupsd 3.10.6•
New features in Apcupsd 3.10.5•
New features in Apcupsd 3.10.4•
Features in Previous Versions•
Apcupsd License•

Apcupsd Reference Manual

General −− Man Page•
Quick Start for Beginners•
UPS Models and Cables Supported•
Operating Systems Supported•
Main Configuration Types•
Compiling and Installing•
Starting•
Stopping or Restarting•
Configuration Directives•
Configuration Examples•
Master/Slave Configuration•
Cables•
Testing•
Shutdown Sequence•
Trouble Shooting•
Apcupsd Network Information Server•
Apcupsd EVENTS•
Apcupsd STATUS•
Apcupsd DATA•
Apcupsd System Logging•
The CGI Network Interface•
apcaccess•
apctest•
Configuring your EEPROM•
UPS Programming Bible•
Apcupsd under Windows•
Using Apcupsd with a USB UPS•
Using Apcupsd with a SNMP UPS•

APC UPS management under Linux

Apcupsd 3.10.6 User's Manual 1

Configuration for Controlling Multiple UPSes•
Batteries•

Other Notes

Frequently Asked Questions•
Security•
Thanks•

Copyright (C), 1999−2003, Kern E. Sibbald

APC UPS management under Linux

Other Notes 2

New Features in Apcupsd 3.10.6

This release contains a good number of cleanups and bug fixes to prior 3.10.x versions, and is intended to be
the official release. See the ChangeLog below for more details.

apcupsd is mainly developed under Linux and will compile cleanly and work under most flavors of Unix as
well as many other operating systems including Windows.

What to do if you find bugs :

send an email to apcupsd−devel at lists.sourceforge.net (Developers mailing list) or visit one of the following
sites:

http://www.apcupsd.com

http://sourceforge.net/projects/apcupsd

Please be sure to include the version of apcupsd you are running, your operating system, and a detailed
description of your problem.

Change Log

− Lots of updates to the document.
− Fixed a slave crash in master/slave mode. It was a missing setup_device,
 and was diagnosed and reported by Christian Schacht −− many thanks.
− Made non−existent header files non−fatal and added #ifdef
 around sys/socket.h so it will compile on IRIX.
− Add Scott's latest apcupsd.conf with the hid−ups program code
 (actually I had done this some time ago ...).
− Start a ReleaseNotes file
− Fixed a typo error (mine) that prevented Scott from building
 rpms. Strange, it worked for me????
− More DESTDIR cleanup for building non−root rpms.
− Add DESTDIR everywhere so we can build rpms non−root
− Additional documentation
− Add Scott's new apcupsd.spec
− On Hilary Jones suggestion, I fixed the ./configure message that
 is printed when no libgd is found to direct the user to the
 main source.
− Add Sergey Vlasov's kernel patch to the examples directory,
 and it replaces the previous patch.
 This patch now solves the killpower problem on Linux USB.

/examples/linux−2.4.20−alt−apc_usb_ups.patch
 notes are in: linux−usb−patch−email.txt
− Add TTY mode to apctest to communicated directly with UPS.
− Apply patch to linux−usb.c in killpower supplied by
 Sergey Vlasov (thanks!).
− Eliminate pow() function in linux−usb.c so that −lm is not needed.
− Add automatic detection of socklen_t
− I received a kernel patch from Sergey Vlasov that fixes
 the killpower problem on CS UPSes. apcupsd can now shutdown
 these devices! I've removed some debug code that was in
 the killpower routine and is not needed or used.
 I have put the kernel patch in:

/examples/linux−2.4.20−alt−hidups.patch
− When the Win32 version starts as a service, delete the
 NOLOGIN and PWRFAIL files to prevent later confusion.

APC UPS management under Linux

New Features in Apcupsd 3.10.6 3

mailto:apcupsd-users at lists.sourceforge.net
http://www.apcupsd.com
http://sourceforge.net/projects/apcupsd
http://sourceforge.net/projects/apcupsd

 Thanks to Allen Crawford for pointing this out.
− Modify all Win32 program so that only windowed programs
 (apcupsd, popup) have the −mwindows flags. The others do not.
− Tweak apctest.c a bit −− add EEPROM programming (still a bit
 kludgy), but at least it can be done.
− Lots of clean ups for Cygwin stuff. Events now work, and exit.
− Clean up a few undefined symbols in building with everything on.
− Eliminate pid and serial port lock file on Win32 systems.
− Modify init script to use daemon so that STDIN/OUT, ... are
 detached from the terminal and pointed to the log file. This
 prevents remotely logged in users who start apcupsd from being
 unable to log out.
− Made some mindor modifications to configure.in and aclocal.m4 to
 make consistent use of double quotes in test statements in
 response to problems with make install reported by Andrew Surratt.
− Thanks to Richard Schwaninger for finding and submitting a patch to
 the tcp−wrappers code that prevented it from working because of an
 invalid name. Fixed.
− Thanks to Andrew Reid for pointing out that the child reaping code
 should be clearing the pid slot if a −1 is returned. The pid table
 was filling up on his system due to killed children. Fixed
− A bug report against the Mandrake version of apcupsd indicates that
 apcupsd is not releasing /dev/console. I've moved the close() of
 STDIN so that it is always executed to prevent this possibility.
− Implement very crude first cut of EEPROM programming in apctest.
 Set battery date, set UPS name, and print EEPROM values should
 work.

APC UPS management under Linux

New Features in Apcupsd 3.10.6 4

New Features in Apcupsd 3.10.5

This release is primarily version 3.10.4 but including a fix that closes a root exploit of slave machines. In
addition, it makes the −−enable−master−slave ./configure option work and has a few updates to the
Mandrake release. See the ChangeLog below for more details.

apcupsd is mainly developed under Linux and will compile cleanly and work under most flavors of Unix as
well as many other operating systems including Windows.

What to do if you find bugs :

send an email to apcupsd−devel at apcupsd.org (Developers mailing list) or go to one of the following sites:

http://www2.apcupsd.com

http://sourceforge.net/projects/apcupsd
http://www.apcupsd.com

Please be sure to include the version of apcupsd you are running, your operating system, and a detailed
description of your problem.

Change Log

−−−−> Release apcupsd−3.10.5 (03 Feb 2003)
 03Feb03
 − Added an avsnprinf() routine.
 − Replaced all vsprintf() calls with avsnprintf() to close a
 master/slave exploit that was published.
 − Remove awk processing of halt script for Mandrake as suggested by
 David Walser.
 02Feb03
 − Corrected −−enable−oldnet to be −−enable−master−slave as I
 had intended. Thanks to David Walser for pointing this out.
 − Added David Walser's apcupsd.spec.in for Mandrake and his
 changes to configure.in.

APC UPS management under Linux

New Features in Apcupsd 3.10.5 5

mailto:apcupsd-devel at apcupsd.org
http://www2.apcupsd.com
http://sourceforge.net/projects/apcupsd
http://sourceforge.net/projects/apcupsd
http://www.apcupsd.com

New Features in Apcupsd 3.10.4

See the list below for the detailed change log. Note, a number of the details of the changes are only
documented in the apcupsd.conf file, and unfortunately not in much detail.

The main new features are:

Support for USB UPSes on Linux. The killpower feature does not work though (most likely a kernel
"bug").

•

Support for additional models and cables.•
New cable for running BackUPS CS in Smart mode (possibly also the BackUPS ES).•
The old master/slave code must be explicitly enabled with −−enable−master−slave option on the
./configure line.

•

Different models are now handled by drivers.•
NIS code, master/slave code, and the drivers can be individually configured giving a much smaller
memory foot print.

•

A host of new configuration options to support enabling/disabling drivers and features.•
Support for limiting what subnets the NIS code will listen to using the new NISIP configuration
directive.

•

SNMP support.•
Support for system provided gd libraries.•
Source tree reorganization.•

apcupsd is mainly developed under Linux and will compile cleanly and work under most flavors of Unix as
well as many other operating systems including Windows.

What to do if you find bugs :

send an email to apcupsd−devel at apcupsd.org (Developers mailing list) or go to one of the following sites:

http://www.apcupsd.org
http://www.sibbald.com/apcupsd

Please be sure to include the version of apcupsd you are running, your operating system, and a detailed
description of your problem.

Change Log

−−−−> Release apcupsd−3.10.4 (21 Jan 2003) (not yet released)
 − Added error messages if old master/slave code called.
 − Reworked the messages for ./configure −−help to be aligned and
 clearer for networking and master/slave
 − A number of important patches all supplied by Mirko Doelle.
 − Moved technotes for 2001 and 2002 into respective directories.
 − Created a new kes−3.10.4 file to which I will append if there
 are additional changes to 3.10.4. This will reduce the number
 of release note files.

 Changes submitted this submission:
 19Jan03
 − Fixed hangs in usb driver startup when could not open port by
 releasing the ups structure lock before the Error_abort calls.
 Thanks to Mirko Doelle for reporting this.

APC UPS management under Linux

New Features in Apcupsd 3.10.4 6

mailto:apcupsd-devel at apcupsd.org
http://www.apcupsd.org
http://www.sibbald.com/apcupsd

 − Fixed the default path for mkinstalldirs from $(topdir) to
 $(topdir)/autoconf. Reported by Mirko.
 − Fixed configure.in to always create platform/apccontrol. Previously
 it was not being created for Debian. Reported by Mirko.
 − Removed Debian specific installation of apccontrol. Reported by
 Mirko.
 − Implemented code to display the apcupsd events with the most recent
 first. Code sent by Mirko, but I modified it slightly.

−−−−> Release apcupsd−3.10.3 (12 Dec 2002)
 − Tried to correct problems with Makefiles
 − Thanks to David Walser who pointed out where on the Sun, the make
 install was doing terrible things −− I found that there was
 a missing semicolon in the new Makefile. Before my previous cleanup,
 there were actually 4 missing semicolons. Hopefully this
 will correct the problem.
 − For a second time, David Walser came to the rescue finding the
 CGI install problem reported by lots of people. The new code
 used "make" instead of $(MAKE) to call the CGI make. Fixed.

 Changes submitted this submission:
 − Removed Makefile code that creates and sets permission bits on
 /tmp $(prefix) and $(exec−prefix)
 − Removed all occurrences of −z in the Makefiles (at least that I
 found) and replaced them with a more conservative formulation.
 − Removed the install−symlinks script that caused some problems
 on distributions with blanks in the DISTVER name.
 − Added install−symlinks to the suse Makefile.in. This is the
 only platform that currently uses it.

−−−−> Release apcupsd−3.10.2 (08 Nov 2002)
 − New cable design for BackUPS CS models to run it
 in Smart serial mode.
 − Corrected a major bug in the smart and net code where the
 status word was getting clobbered.

 Changes submitted this submission:
 − A few days ago, slither_man sent me an email with some
 information on how to run a BackUPS CS in smart mode with
 a serial cable. He found the information by assuming that
 the UPS supported Smart mode and through trial and error.
 Well, it works!!!!!!! Amazing!!!! Thanks slither_man.
 − Documentation for new CUSTOM−RJ54 cable that can be constructed
 from the end of an ethernet cable and a DB9F connector.

 − Changed all the MAIL instances in shell scripts into APCUPSD_MAIL.
 This helps keep separated the apcupsd specific shell variables from
 the generic $MAIL shell variable that points to the user's mailbox:

 riccardo at ao:~> echo $MAIL
 /var/spool/mail/riccardo
 riccardo at ao:~>

 An user reported that ./configure script transformed internal $MAIL
 executable program into her mailbox path. This may happen if the
 configure suite is broken (thing that I don't want to check further).
 That said, APCUPSD_MAIL now should always correctly point to the
 system default mail client program.
 − Made so that error_cleanup is a generic function called by the
 generic error handlers. Now if you want specific error_cleanup

APC UPS management under Linux

New Features in Apcupsd 3.10.4 7

 you don't need to write also specific error handlers, provided
 that error_cleanup don't accept parameters (i.e.
 specific_error_cleanup(void)) but if you want to have a specific
 error_cleanup with parameters you _must_ also write specific
 error_exit and error_out into which you will call the specific
 error_cleanup with parameters.
 − Made so that error_exit and error_out are generic handlers that
 can be assigned, if needed, to specific handlers by the main() of
 each program. If not, the Error* routines will use the generic
 versions in apclib.a.
 − Fixed wrong "true" usage in powerflute.
 − Cleaned up the terminate() functions.
 − Made DeviceVendor part of snmp DEVICE case insensitive.

−−−−> Release apcupsd−3.10.1 (16 Sep 2002)
 − Fixed a filling error with USB status dword.
 − Fixed autoconf check and dependances of −lpanel,etc with −lncurses.
 − Made more portable the apccontrol external scripts when calling the
 mailer (subject is now in the echo lines instead of relying on the
 presence of a −s switch on the mailer).
 − Added gentoo platform.
 − Added DESTDIR variable for platform packaging.
 − Fixed a off−by−one problem in events table.
 − Conditional compilation of old and new network code. Old network code
 disabled by default while new network code enabled by default.
 − Removed old src/apcnet.c.old, old implementation of old networking.

−−−−> Release apcupsd−3.10.0 (28 Jul 2002)
 − Added documentation for SNMP UPSes. Documented the use of
 −−kill−on−powerfail switch during shutdown.
 − SuSE 8.0 is now supported.
 − Added forward declaration of inet_pton and localtime_r when they
 are extraobj.
 − Added inet_pton function. Implementation from Internet Software
 Consortium.
 − Made sp_flags private to the dumb driver.
 − Can't SET/CLEAR multiple flags: do them one by one. Fixed this
 bug in SNMP driver.
 − Added 127A and 128A cables support for dumb UPSes.
 − Implemented killpower for PowerNet MIB.
 − Implemented the SNMP driver for APC's PowerNet MIB.
 − Restructured UPSINFO so that now all the flags are contained
 into the Status bitmap.
 − *BSD should compile cleanly again.
 − Source tree is now under CVS revision control.
 − Added support for listening on specific IP addresses/subnets in
 NIS server, from Troy.
 − Doc updates, from Kern.

−−−−> Release apcupsd−3.9.9 (18 May 2002)
 − Applied final Kern's patch.
 − Added a little program 'devicedbg' to help in debugging device
 drivers with gdb. To compile, 'make devicedbg' in src/.
 − Cygwin platform added (reorganized old cygwin files).
 − Darwin platform added.
 − compile line is 'gcc −c −g −O2 −I../include apcaction.c'.
 − reviewed all the platform makefiles.
 − use system libgd, searching for include files in system include dirs.
 − in case system does not have libgd, uses provided libgd.
 − put gd1.2 into master's contrib directory and a message if gd1.2
 is not present into src/gd1.2 (like default distribution will not)

APC UPS management under Linux

New Features in Apcupsd 3.10.4 8

 is issued at configure time to get gd1.2 from contrib and extract it
 into the src/ directory. Re−run config and all will be good and happy.
 − Sources reorganization.
 − Mandrake platform added.

APC UPS management under Linux

New Features in Apcupsd 3.10.4 9

Apcupsd Linux UPS daemon version 3.8.3

apcupsd a program for controlling APC UPSes

SYNOPSIS

/sbin/apcupsd
/etc/apcupsd/apccontrol
/etc/apcupsd/apcupsd.conf
/sbin/apcaccess
/sbin/apcnisd

DESCRIPTION

Apcupsd can be used for controlling APC UPSes. During a power failure, apcupsd will inform the users
about the power failure and that a shutdown may occur. If power is not restored, a system shutdown will
follow when the battery is exhausted, a timeout (seconds) expires, or runtime expires based on internal APC
calculations determined by power consumption rates. If the power is restored before one of the above
shutdown conditions is met, apcupsd will inform users about this fact.

Apcupsd runs on Linux systems, many Unix systems (Solaris, FreeBSD, OpenBSD, Alpha, ...) as well as on
Windows systems (Win95/98/Me/NT/2000).

Apcupsd performs the shutdown by calling /etc/apcupsd/apccontrol, which is a shell script. Consequently,
no changes to /etc/inittab are necessary. There is no communication between apcupsd and init(1) process.
During installation, the system halt script was modified so that at the end of the shutdown process during a
power failure, apcupsd will be re−executed in order to power off the UPS. This step is not mandatory, but is
good practice as it avoids the possibility of your system being prematurely restarted if the power returns for a
short period. It also permits your computer to be automatically rebooted when the power is restored providing
you have configured your computer BIOS appropriately.

The apcupsd daemon now supports two networking modes that function independently, but if desired at the
same time.

Most users will probably enable the first network mode, which permits apcupsd to serve STATUS and
EVENTS information to clients over the network.

The second networking mode is for multiple networked machines that are powered by the same UPS. In this
mode, one machine is configured as a master with the UPS attached to the serial port. The other machines
(maximum 20) powered by the same UPS are configured as slaves. The master has a network connection with
the slaves and sends them information about the UPS status. Please see the UPS Sharing section of this
document for more details.

RedHat and SuSE. versions of Linux have direct install support, as does Solaris. All other flavors of Linux

APC UPS management under Linux

apcupsd a program for controlling APC UPSes 10

and Unix machines may need some fussing with to get the install correct.

For credits, please see the Thanks Chapter of this manual.

APC UPS management under Linux

apcupsd a program for controlling APC UPSes 11

Quick Start for Beginners

For beginners, setting up apcupsd can be a bit overwhelming because of the new terminology and the large
number of options available in apcupsd. As a consequence, the following is meant to help guide to the steps
needed to get it up and running as painlessly as possible.

First take a look at the Configuration Chapter of the manual. In particular, look at the models and
cables supported.

•

Decide if you have a Smart UPS, a Dumb UPS, or a USB UPS.•
Find out what cable type you have by looking on the flat ends of the cable for a number such as
940−0020A stamped in the plastic.

•

Read the Building and Installing section of the manual.•
Configure, build, and install apcupsd•
Tweak your /etc/apcupsd/apcupd.conf file as necessary.•
Read and follow the instructions in the Testing chapter of the manual.•
If you run into problems, read the Trouble Shooting section of the manual.•
If you still need help, send a message to the developer's email list describing your problem, what
version of apcupsd you are using, what Operating System you are using, and anything else that would
be helpful.

•

APC UPS management under Linux

Quick Start for Beginners 12

Building and Installing Apcupsd
The installation can be made several different ways depending on what system you are running. The basic
procedure involves getting a source distribution, running the configuration, rebuilding, and installing. For
RedHat systems, apcupsd is available in binary RPM format as well as source RPM format. Please see
RedHat RPM Installation below for more details of the RPM installation. For Microsoft Windows systems,
there are two forms of binary install (tar file, and setup.exe). Please see Win32 Installation below for more
details of the Windows install.

The basic installation from a tar source file is rather simple:

Detar the source code.1.
cd to the directory containing the source code.2.
./configure (with appropriate options as described below)3.
make4.
su (i.e. become root)5.
Stop any running apcupsd
<system−dependent−path>/apcupsd stop

6.

uninstall any old apcupsd
This is important since the default install locations may have changed.

7.

make install8.
edit your /etc/apcupsd/apcupsd.conf file if necessary9.
ensure that your halt script is properly updated10.
Start the new apcupsd with:
<system−dependent−path>/apcupsd start

11.

IMPORTANT! Test the installation as outlined in the Testing Chapter of this document.12.

If all goes well, the ./configure will correctly determine which operating system you are running and
configure the source code appropriately. configure currently recognizes the systems listed below in the
Operating System Specifics section of this chapter and adapts the configuration appropriately. Check that the
configuration report printed at the end of the ./configure process corresponds to your choice of directories,
options, and that it has correctly detected your operating system. If not, redo the ./configure with the
appropriate options until your configuration is correct.

Please note that a number of the ./configure options preset apcupsd.conf directive values in an attempt to
automatically adapt apcupsd as best possible to your system. You can change the values in apcupsd.conf at a
later time without redoing the configuration process by simply editing the apcupsd.conf file.

For systems other than those mentioned above, you may need to do some tweaking.

In general, you will probably want to supply a more complicated configure statement to ensure that the
modules you want are built and that everything is placed into the correct directories.

On RedHat, I use the following:

CFLAGS="−g −O2" LDFLAGS="−g" ./configure \
 −−prefix=/usr \
 −−sbindir=/sbin \
 −−with−cgi−bin=/home/www/sibbald/new/cgi−bin \
 −−enable−cgi \
 −−with−css−dir=/home/www/sibbald/new/docs/css \

APC UPS management under Linux

Building and Installing Apcupsd 13

 −−with−log−dir=/etc/apcupsd \
 −−enable−pthreads \
 −−enable−powerflute

Default Options

By default, make install will install the executable files in /sbin, the manuals in /usr/man, and the
configuration and script files in /etc/apcupsd. In addition, if your system is recognized, certain files such as
the startup script and the system halt script will be placed in appropriate system directories (usually
subdirectories of /etc/rc.d).

Checking the Installation

There are a number of things that you can do to check if the installation (make install) went well. The fist is to
check where the system has installed apcupsd using which and whereis. On my RedHat 6.1 system, I get the
following (lines preceded with a $ indicate what I typed):

$ which apcupsd
/sbin/apcupsd

and

$ whereis apcupsd
apcupsd: /sbin/apcupsd /etc/apcupsd /etc/apcupsd.conf /etc/apcupsd.status /usr/man/man8/apcupsd.8.gz
/usr/man/man8/apcupsd.8

If you find an apcupsd in /usr/sbin, /usr/local/sbin, /usr/lib, or another such directory, it is probably a piece of
an old version of apcupsd that you can delete. If you are in doubt, delete it, then rerun the make install to
ensure that you haven't deleted anything needed by the new apcupsd. Please note that the files specified
above assume the default installation locations.

Final Installation Check

As a final check that the make install went well, you should check your halt script (in /etc/rc.d on SuSE
systems, and in /etc/rc.d/init.d on RedHat systems) to see that the appropriate lines have been inserted in the
correct place. Modification of the halt script is important so that at the end of the shutdown procedure,
apcupsd will be called again to command the UPS to turn off the power. This should only be done in a power
failure situation as indicated by the presence of the /etc/powerfail file, and is necessary if you want your
machine to automatically be restarted when the power returns. On a RedHat system, the lines containing the #
apcupsd should be inserted just before the final halt command:

Remount read only anything that's left mounted.
#echo "Remounting remaining filesystems (if any) readonly"
mount | awk '/ext2/ { print $3 }' | while read line; do
 mount −n −o ro,remount $line
done

See if this is a powerfail situation. # ***apcupsd***
if [−f /etc/apcupsd/powerfail]; then # ***apcupsd***
 echo # ***apcupsd***
 echo "APCUPSD will now power off the UPS" # ***apcupsd***
 echo # ***apcupsd***

APC UPS management under Linux

Default Options 14

 /etc/apcupsd/apccontrol killpower # ***apcupsd***
 echo # ***apcupsd***
 echo "Please ensure that the UPS has powered off before rebooting" # ***apcupsd***
 echo "Otherwise, the UPS may cut the power during the reboot!!!" # ***apcupsd***
 echo # ***apcupsd***
fi # ***apcupsd***

Now halt or reboot.
echo "$message"
if [−f /fastboot]; then
 echo "On the next boot fsck will be skipped."
elif [−f /forcefsck]; then
 echo "On the next boot fsck will be forced."
fi

The purpose of modifying the system halt files is so that apcupsd will be recalled after the system is in a
stable state. At that point, apcupsd will instruct the UPS to shut off the power. This is necessary if you wish
your system to automatically reboot when the mains power is restored. If you prefer to manually reboot your
system, you can skip this final system dependent installation step by specifying the −−disable−install−distdir
option on the ./configure command (see below for more details).

The above pertains to RedHat systems only. There are significant differences in the procedures on each
system, as well as the location of the halt script. Also, the information that is inserted in your halt script varies
from system to system. Other systems such as Solaris require you the make the changes manually, which has
the advantage that you won't have any unpleasant surprises in your halt script should things go wrong. Please
consult the specific system dependent README files for more details.

Please note that if you install from RPMs for a slave machine, you will need to remove the changes that the
RPM install script made (similar to what is noted above) to the halt script. This is because on a slave machine
there is no connection to the UPS, so there is no need to attempt to power off the UPS. That will be done by
the master.

Configure Options

All the available configure options can be printed by entering:

./configure −−help

When specifying options for ./configure, if in doubt, don't put anything, since normally the configuration
process will determine the proper settings for your system. The advantage of these options is that it permits
you to customize your version of apcupsd. If you save the ./configure command that you use to create
apcupsd, you can quickly reset the same customization in the next version of apcupsd by simply re−using the
same ./configure command.

If you are setting up a master/slave configuration, you will be required to make some modifications to the
apcupsd.conf files after the configuration process. For more details on a master/slave setup (two computers
powered by the same UPS), please see the Configuration Examples Chapter of this document. In addition, you
will find some schematic diagrams of the possible configurations in the Configuration Chapter.

The following command line options are available for configure to customize your installation.

−−prefix=<path>
This defines the directory for the non−executable files such as the manuals. The default is /usr.

APC UPS management under Linux

Configure Options 15

−−sbindir=<path>
This defines the directory for the executable files such as apcupsd. The default is /sbin. You may be
tempted to place the executable files in /usr/sbin or /usr/local/sbin. Please use caution here as these
directories may be unmounted during a shutdown and thus may prevent the halt script from calling
apcupsd to turn off the UPS power. Though your data will be protected, in this case, your system will
probably not be automatically rebooted when the power returns.

−−enable−powerflute
This option enables the building of the powerflute executable, which is a ncurses based program to
monitor the UPS. This program is not necessary for the proper execution of apcupsd.

−−enable−cgi
This enables the building of the CGI programs that permit Web browser access to apcupsd data. This
option is not necessary for the proper execution of apcupsd.

−−with−cgi−bin=<path>
The with−cgi−bin configuration option allows you to define the directory where the cgi programs will
be installed. The default is /etc/apcupsd, which is not necessarily what you want.

−−with−css−dir=<path>
This option allows you to specify where you want apcupsd to put the Cascading Style Sheet that goes
with the multimoncss.cgi CGI program.

−−enable−master−slave
Turns on the master/slave networking code (default). This is sometimes referred to as the old
master/slave code

−−enable−apcsmart
Turns on generation of the APC Smart driver (default).

−−enable−dumb
Turns on generation of the dumb signaling driver code (default).

−−enable−usb
Turns on generation of the Linux (only) USB driver code. By default this is disabled.

−−enable−net
Turns on generation of the NIS network driver for slaves. This is an alternative to master/slave code.
For the master, this code should be disabled. For each slave, this is the only driver needed. This driver
works by reading the information from the the configured master using the NIS (Network Information
Services) interface.

−−enable−snmp
Turns on generation of the SNMP driver. This driver will control the computer by reading the UPS
information over the network assuming you are running SNMP. By default this is disabled.

−−enable−test
This turns on a test driver that is used only for debugging. By default it is disabled.

−−enable−nis
Turns on the Network Information Server (NIS) code within apcupsd. This is enabled by default. If
you do not want to access the status of the UPS from the network and you are not controlling any
slaves via NIS (enable−net), this can be disabled.

−−enable−pthreads
This option enables pthreads support causing apcupsd to be built as a threaded program rather than
forking to create separate processes. apcupsd built in this fashion is more efficient that the standard
version being one third the data size and less overhead locking and coping shared memory. This
option is highly recommended for Windows builds.

−−with−libwrap=<path>
This option when enabled causes apcupsd to be built with the TCP WRAPPER library for enhanced
security.
In most cases, the <path> is optional since configure will determine where the libraries are on most
systems.

APC UPS management under Linux

Configure Options 16

−−with−nologin=<path>
This option allows you to specify where apcupsd will create the nologin file when logins are
prohibited. The default is /etc

−−with−pid−dir=<path>
This option allows you to specify where apcupsd will create the process id (PID) file to prevent
multiple copies from running. The default is system dependent but usually /var/run.

−−with−log−dir=<path>
This option allows you to specify where apcupsd will create the EVENTS and STATUS log files.
The default is /etc/apcupsd. This option simply sets the appropriate path in the apcupsd.conf file,
which can be changed at any later time.

−−with−lock−dir=<path>
This option allows you to specify where apcupsd will create create the serial port lock file. The
default is system dependent but usually /var/lock. This option simply sets the appropriate path in the
apcupsd.conf file, which can be changed at any later time.

−−with−pwrfail−dir=<path>
This option allows you to specify where apcupsd will create the powerfail file when a power failure
occurs. The default is system dependent but usually /etc.

−−with−serial−dev=<device−name>
This option allows you to specify where apcupsd will look for the serial device. The default is system
dependent, but often /dev/ttyS0. This option simply sets the appropriate device name in the
apcupsd.conf file, which can be changed at any later time.

−−with−nis−port=<port>
This option allows you to specify what port apcupsd will use for the Network Information Server (the
CGI programs). The default is system dependent but usually 3551 because that port has been
officially assigned to apcupsd by the IANA. This option simply sets the appropriate port in the
apcupsd.conf file, which can be changed at any later time.

−−with−nisip=<IP−Address>
This option allows you to specify the value that will be placed on then NISIP directive in the
configuration file. The default is 0.0.0.0. No checking is done on the value entered, so you must
ensure that it is a valid IP address.

−−with−net−port=<port>
This option allows you to specify what port apcupsd will use for the Master and Slave
communications. The default is system dependent but usually 6666. This option simply sets the
appropriate port in the apcupsd.conf file, which can be changed at any later time.

−−with−upstype=<type>
This option allows you to specify the type of UPS that will be connected to your computer. The
default is: smartups. This option simply sets the appropriate UPS type in the apcupsd.conf file,
which can be changed at any later time.

−−with−upscable=<path>
This option allows you to specify what cable you are using to connect to the UPS. The default is:
smart. This option simply sets the appropriate UPS cable in the apcupsd.conf file, which can be
changed at any later time.

−−disable−install−distdir
This option modifies the apcupsd Makefiles disable installation of the distribution (platform)
directory. Generally, this used to do a full installation of apcupsd except the final modification of the
operating system files (normally /etc/rc.d/halt, etc.). This is useful if your operating system is not
directly supported by apcupsd or if you want to run two copies of apcupsd on the same system. This
option can also be used by those of you who prefer to manually reboot your system after a power
failure or who do not want to modify your system halt files.

APC UPS management under Linux

Configure Options 17

Recommended Options for most Systems

For most systems, we recommend the following options:

./configure −−prefix=/usr −−sbindir=/sbin

and you can optionally build and install the CGI programs as follows:

./configure −−prefix=/usr −−sbindir=/sbin −−enable−cgi −−with−cgi−bin=/home/httpd/cgi−bin

Compilers and Options

Some systems require unusual options for compilation or linking that the ./configure script does not know
about. You can specify initial values for variables by setting them in the environment. Using a
Bourne−compatible shell, you can do that on the command line like this:

CFLAGS="−O2 −Wall" LDFLAGS= ./configure

Or on systems that have the env program, you can do it like this:

env CPPFLAGS=−I/usr/local/include LDFLAGS=−s ./configure

Or for example on the Sun Solaris system, you can use:

setenv CFLAGS −O2

setenv LDFLAGS −O

./configure

Operating System Specifics
With the exception of Linux SuSe and Linux RedHat systems used by the developers, we rely on users to help
create installation scripts and instructions as well as to test that apcupsd runs correctly on their system. As
you can imagine, most of these people are system administrators rather than developers so they are very busy
and don't always have time to test the latest releases. With that in mind, we believe that you will find that a lot
of very valuable work has been already done to make your installation much easier (and probably totally
automatic).

Below, you will find a list of Operating Systems for which we have received installation files:

Alpha
Debian
FreeBSD
HPUX
NetBSD
OpenBSD
RedHat
RedHat RPM Installation

APC UPS management under Linux

Operating System Specifics 18

Slackware
SuSE
Solaris
Unknown
Windows

Alpha

The Alpha V4.0 version of apcupsd builds without compiler errors with gcc version 2.95.2. It is unlikely that
the native Alpha compiler will work because of varargs differences. Unless you are a system guru, we
recommend that you connect your UPS to the second serial port /dev/tty01 to avoid conflicts with the console
device.

DEVICE /dev/tty01

In addition, you should ensure serial port lock file in apcupsd.conf is defined as:

LOCKFILE /var/spool/locks

Unlike the Linux systems, the system halt routine is located in /sbin/rc0, so after the make install, please
check that this file has been correctly updated.

The start/stop script can be found in:

/sbin/init.d/apcupsd

Debian

This port is complete and is operation by several users. Since Debian build and install procedures are
somewhat particular, we have put the extra Debian information into the following two subdirectories:
<src>/distributions/debian/examples/ and <src>/distributions/debian/packageinfo

You can also find the official Debian packages on the Debian site at:

http://packages.debian.org/stable/admin/apcupsd.html
http://packages.debian.org/testing/admin/apcupsd.html
http://packages.debian.org/unstable/admin/apcupsd.html

FreeBSD

This port is complete and is being used by several users. As of version 3.8.3, we do not recommend that you
compile apcupsd with pthreads enabled. This is because the current FreeBSD implementation of pthreads
runs as a single process, and thus is less efficient (consumes more CPU time) than the forking version of
apcupsd. We hope to rectify this in a future version by using the FreeBSD LinuxThreads implementation of
pthreads.

On the FreeBSD OS, there is no known way for a user program to get control when all the disks are synced.
This is needed for apcupsd to be able to issue the killpower command to the UPS so that the UPS shuts off
the power. To accomplish the same thing on FreeBSD systems, make sure you have a SmartUPS and that
your UPS shutdown grace period is set sufficiently long so that you system will power down (usually 2

APC UPS management under Linux

Alpha 19

http://packages.debian.org/stable/admin/apcupsd.html
http://packages.debian.org/testing/admin/apcupsd.html
http://packages.debian.org/unstable/admin/apcupsd.html

minutes), the use the −−kill−on−powerfail option on the apcupsd command line.

HPUX

We have no reports of testing this yet on version 3.8.4, but worked fine on 3.8.1

NetBSD

Submitted during development of 3.8.2, this should be a complete distribution.
Please read the comments on the pthreads implementation in the FreeBSD section above as they may apply
equally to OpenBSD.

OpenBSD

Ensure that you read the distributions/openbsd/README file before running apcupsd. There are some critical
differences in how the OpenBSD implementation operates when the UPS batteries are exhausted. Failure to
take this into account may result in the system not being fully halted when power is lost.
Please read the comments on the pthreads implementation in the FreeBSD section above as they may apply
equally to OpenBSD.

RedHat Systems

RedHat systems are fully supported, and by following the standard installation instructions given above, you
should experience few or no problems.

RedHat RPM Installation

For RedHat systems 6.0, 6.1, and 6.2, and 7.0, there are binary and source RPMs available. Follow standard
procedures for installing them. Please note, that the neither the 6.x nor the 7.0 RPMs can be installed on a
RedHat 7.1 system. These binary RPMs can be installed with:

rpm −Uhv <release>

where <release> is the release to be installed, and is typically something like apcupsd−3.8.0.i386.rpm (or
perhaps apcupsd−3.8.0−pre6.i386.rpm for a pre−release).

IMPORTANTIf you are doing a binary RPM upgrade, please remove the previous version of apcupsd
because for some unknown reason, the rpm does not always update the halt script. To do the upgrade, use the
following two commands:

rpm −e apcupsd
rpm −Uhv <release>

After installation of the binary RPM, please verify carefully that /etc/rc.d/init.d/halt was properly updated
and contains new script lines flagged with ***APCUPSD***.

Since there is no standard location for cgi−bin, the rpm will place the binary CGI programs in the directory
/etc/apcupsd/cgi. To actually use them, you must copy or move them to your actual cgi−bin directory, which
on many systems is located in /home/httpd/cgi−bin.

APC UPS management under Linux

HPUX 20

Slackware

Slackware systems are fully supported, and by following the standard installation instructions given above,
you should experience few or no problems.

SuSE

SuSE systems are fully supported, and by following the standard installation instructions given above, you
should experience few or no problems.

Sun Solaris

Please read this before attempting to compile or install the beta software. It contains important information
that will make your efforts easier.

If you find bugs, or run into problems that seem to be related to the version of Solaris that you run, please feel
free to contact me by email, or through the development mailing list. I'll attempt to help with problems getting
the beta running, although I can't promise a quick response.

As always, remember testing UPSes can be hazardous to you system, and, APCUPSD MAY CONTAIN
BUGS THAT CAN DAMAGE YOUR SYSTEM AND DATA FILES! You must accept all responsibility for
running this software. An unexpected power−off of a running system can be a disaster. As always, make
backups of any critical information before you install this software.

Remember, we told you. we'll listen sympathetically if you lose data, but there will be nothing we can do to
help you.

Sincerely,
Carl Erhorn <cerhorn at hyperion.com> <apcupsd−devel at ro.com>

Please read the general installation instructions given above before continuing on with these Solaris−specific
instructions. Then come back and read this section before attempting to build the package.

For building the system, we suggest that you run the configure and make processes as your normal UNIX user
ID. The make install must be run as root. But if your normal ID has an environment setup for using the c
compiler, it's simpler to do that than setup root to have the correct environment.

Normally, we support the GCC compiler, but we have also attempted to support the Solaris workshop
compilers and EGCS compilers. Please be aware that if you do not use GCC, you may experience a few
problems.

Whichever compiler you do have, please insure that you can execute the compiler from the command line
before running configure. If you do not have an environment setup to run the compiler first, configure will
fail.

Before running ./configure, please be sure that you do not have /usr/ucb on your path. This may cause the
./configure to chose the wrong shutdown program. If ./configure detects that /usr/usb is on your path, it will
print a warning message. Please follow the advice to avoid shutdown problems.

APC UPS management under Linux

SuSE 21

Your normal UNIX user ID must own the source tree directories, and you must have the normal development
tools in your path. This includes make, the compiler, the M4 preprocessor, the linker, and ar or ranlib. If the
user you are logged in as can compile and link a c program from a source file, then you have all the required
tools available.

You will want to install the executables in a directory that remains mounted during the shutdown. Solaris will
unmount almost everything except the root directories. Since the ability to power the UPS off requires access
to the executable programs, they need to be in a directory that will never be unmounted. And since they
should also be in a directory that normal users cannot get into, /sbin is the default. However, please be aware
that if you want to follow Sun's filesystem conventions you would use the following:

./configure \
 −−prefix=/opt/apcupsd \
 −−sbindir=/etc/opt/apcupsd/sbin \
 −−sysconfdir=/etc/opt/apcupsd \
 −−with−cgi−bin=/opt/apcupsd/cgi−bin

The way to setup the /sbin directory as the executables directory is to pass configure the −−sbindir=/sbin
option. No other arguments should be required, and your setup and platform should be detected automatically
by configure.

Once you have run configure, you will need to do a make. Once the make has completed with no errors, you
must su to root to complete the install. After the su, you may not have a path to the make program anymore. In
that case, you should do the make install step as:

/usr/ccs/bin/make install

Once the install completes, you must edit the /sbin/rc0 script as detailed below, then exit from the su'ed shell.

In order to support unattended operation and shutdown during a power failure, it's important that the UPS
remove power after the shutdown completes. This allows the unattended UPS to reboot the system when
power returns by re−powering the system. Of course, you need autoboot enabled for your system to do this,
but all Solaris systems have this by default. If you have disabled this on your system, please re−enable it.

To get the UPS to remove power from the system at the correct time during shutdown, i.e., after the disks
have done their final sync, we need to modify a system script. This script is /sbin/rc0.

We do not have access to every version of Solaris, but we believe this file will be almost identical on every
version. Please let us know if this is not true.

At the very end of the /sbin/rc0 script, you should find lines just like the following:

unmount file systems. /usr, /var and /var/adm are not unmounted by umountall
because they are mounted by rcS (for single user mode) rather than
mountall.
If this is changed, mountall, umountall and rcS should also change.
/sbin/umountall
/sbin/umount /var/adm >/dev/null 2>1/sbin/umount /var >/dev/null 2>1/sbin/umount /usr >/dev/null 2>1
echo 'The system is down.'

We need to insert the following lines just before the last 'echo':

#see if this is a powerfail situation

APC UPS management under Linux

SuSE 22

if [−f /etc/apcupsd/powerfail]; then
 echo
 echo "APCUPSD will power off the UPS"
 echo
 /etc/apcupsd/apccontrol killpower
 echo
 echo "Please ensure that the UPS has powered off before rebooting"
 echo "Otherwise, the UPS may cut the power during the reboot!!!"
 echo
fi

We have included these lines in a file called rc0.solaris in the distributions/sun subdirectory of the source tree.
You can cut and paste them into the /sbin/rc0 file at the correct place, or yank and put them using vi or any
other editor. Note that you must be root to edit this file.

You must be absolutely sure you have them in the right place. If your /sbin/rc0 file does not look like the lines
shown above, do not modify the file. Instead, email a copy of the file to me, and I will attempt to figure out
what you should do. If you mess up this file, the system will not shut down cleanly, and you could lose data.
Don't take the chance.

This feature has only been tested with APC SmartUPS models. If you do not have a SmartUPS, you will be
one of the first testers to try this feature. Please send me email to let me know if it works with your UPS
model, what model you have, and if possible, the event logs located in /etc/apcupsd. We'd be very interested
in your results, and would be glad to work with you to get this feature working correctly with all the APC
models. A detailed description of the screen output during the shutdown would be very helpful if you see
problems.

You will then need to make the normal changes to the /etc/apcupsd/apcupsd.conf file. This file contains the
configuration settings for the package. It is important that you set the values to match your UPS model and
cable type, and the serial port that you have attached the UPS to. I have used both /dev/ttya and /dev/ttyb with
no problems. You should be sure that logins are disabled on the port you are going to use, otherwise you will
not be able to communicate with the UPS. If you are not sure that logins are disabled for the port, run the
'admintool' program as root, and disable the port. The 'admintool' program is a GUI administration program,
and required that you are running CDE, OpenWindows, or another XWindows program such as KDE.

Solaris EEPROM Changes

Solaris probes the serial ports during boot, and during this process, it toggles some handshaking lines used by
the UPS. As a result, particularly for simple signaling "dumb" UPSes it seems to kick it into a mode that
makes the UPS think it's either in a calibration run, or some self−test mode. Since at this point we are really
not communicating with the UPS, it's pretty hard to tell what happened. But it's easy to prevent this, and you
should. Disconnect the UPS, and boot the system. When you get to a login prompt, log in as root. Type the
following command:

eeprom com1−noprobe=true

or

eeprom com2−noprobe=true

depending on which com port your UPS is attached to. Then sync and shutdown the system normally, reattach
the UPS, and reboot. This should solve the problem. However, we have some reports that recent versions of
Solaris (7 & 8) appear to have removed this eeprom option and there seems to be no way to suppress the serial

APC UPS management under Linux

Solaris EEPROM Changes 23

port probing during boot.

At this point, you should have a complete installation. The daemon will load automatically at the next boot.
Watch for any error messages during boot, and check the event logs in /etc/apcupsd. If everything looks OK,
you can try testing the package by removing power from the UPS. NOTE! if you have a simple signaling
UPS, please run the first power tests with your computer plugged into the wall rather than into the UPS. This
is because simple signaling UPSes have a tendency to power off if your configuration or cable are not correct.

As a user, your input is very helpful in solving problems with the package, and providing suggestions and
future directions for the development of the package. We are striving to provide a useful package that works
across all platforms, and welcome your feedback.

Best regards, and thanks for your interest and help, The Apcupsd Development Team.

Unknown Operating System

During the ./configure, if apcupsd does not find one of the systems for which it has specific installation
programs, it will set the Operating System to unknown and will use the incomplete installation scripts that are
in <src>/distributions/unknown/. You will be on your own, or you can ask the developers list
(apcupsd−devel at apcupsd.org) for installation instructions. This directory also contains a hint file for Linux
From Scratch, which could be helpful for other systems as well.

Windows Systems with CYGWIN Installed

If you have a binary release of the Win32 apcupsd, please see the instructions in the Win32 section of this
manual.

If you wish to build from the source, and if you have CYGWIN version 1.3.20 and GCC 2.95.3−5 installed, it
is possible to build the Win32 version of apcupsd. Please don't try any other versions of CYGWIN as there
were known problems.

To date, the Win32 version has only been build on a Win98 SR2 and a WinXP system with the above
CYGWIN environment and all the available CYGWIN tools loaded. In addition, the builds were done running
under the bash shell. As time permits, we will experiment with other environments, and if any of you do build
it from source, please let us know. The current CYGWIN environment was loaded using the CYGWIN
setup.exe program, downloading ALL the latest binaries and installing them.

We recommend that you run the ./configure command with the following options:

./configure \
 −−prefix=/apcupsd \
 −−sbindir=/apcupsd/bin \
 −−sysconfdir=/apcupsd/etc/apcupsd \
 −−with−pid−dir=/apcupsd/etc/apcupsd \
 −−mandir=/apcupsd \
 −−with−cgi−bin=/apcupsd/etc/apcupsd/cgi \
 −−enable−pthreads

After which, you can do a:

make

APC UPS management under Linux

Unknown Operating System 24

And to install apcupsd, do:

make install

Finally, you should follow the installation instructions in the Win32 Installation section of this document,
skipping the part that describes unZipping the binary release.

APC UPS management under Linux

Unknown Operating System 25

Apcupsd Post Installation Configuration
It may be necessary to change the configuration information in the file /etc/apcupsd/apcupsd.conf to meet
your needs and to correspond to your configuration. This file is a plain ASCII file and you can use your
favorite editor to change it. However, please take a careful look at the installation chapter in this document,
because many of these directives can be correctly set during installation using the ./configure program. This
simplifies the task of editing the configuration file, and ensures that other files (CGI) are appropriately
modified as well.

Three Major Configuration Possibilities for Apcuspd

There are three major ways of running apcupsd on your system. The first is a standalone configuration where
apcupsd controls a single UPS, which powers the computer. This is the most common configuration. The
second configuration is a master/slave configuration, where one UPS powers several computers, each of
which runs a copy of apcupsd. The computer that controls the UPS is called the master, and the other
computers are called slaves. The master copy of apcupsd communicates with and controls the slaves via an
ethernet connection. The third configuration (new with version 3.8.3), is where a single computer controls
multiple UPSes. In this case, there are several copies of apcupsd on the same computer each controlling a
different UPS. One copy of apcupsd will run in standalone mode, and the other copy or copies will normally
run in master/slave mode.

These three possibilities can be represented by the following diagrams:

APC UPS management under Linux

Apcupsd Post Installation Configuration 26

If you wish to see some simple examples of possible configuration files, please see the Configuration
Examples Chapter of this document.

For more details about the Multi−UPS Configuration, please see the Chapter entitled Configuration for
Controlling Multiple UPSes in this manual.

Configuration Directives

Configuration directives in /etc/apcupsd/apcupsd.conf are:

APC UPS management under Linux

Configuration Directives 27

General Configuration Directives

In general, each of these directives is required (the DEVICE directive is ignored for UPSCABLE ether).

UPSTYPE <type of APC UPS you have>
One of the big problems is understanding what kind of UPS you have and knowing what cable to use
with what UPS. If you received a cable with your UPS, the cable number is stamped on the side of the
connector (usually in the plastic on both cable ends), and it is most likely the correct cable for your
UPS.
In the table below, we attempt to show what cables are known to work with each UPS. This
information is a bit sketchy and so should not yet be considered definitive. Any comments or
corrections would be appreciated.

The UPSTYPE directive can be defined during installation by using the −−with−upstype= option on
the ./configure program.

Apcupsd
UPSTYPE
Keyword

APC Model
UPS

Signaling
Cables Supported Status

backups BackUPS Simple

*Simple−Custom,
940−0020B,
940−0020C,
940−0119A,
940−0023A

Supported

backups BackUPS Office Simple 940−0119A Supported

backups BackUPS ES Simple 940−0119A

Supported
(apparently
identical to the
BackUPS
Office)

smartups
BackUPS CS (serial
mode)

SubSmart Smart (*Custom RJ45)
Supported using
the Custom
RJ45 cable

usb

BackUPS CS USB,
Pro USB, and ES
USB models
including RS/XS
1000 and RS/XS
1500.

SubSmart
USB (using APC
cables 940−0127A/B)

Supported in
apcupsd version
3.9.4 and later

APC UPS management under Linux

General Configuration Directives 28

backups
BackUPS CS and
possibly ES models
(serial mode)

Simple 940−0128A Supported

sharebasic ShareUPS Basic Port Simple
940−0020B,
940−0020C,
940−0023A

Supported

dumb
All models listed
abovet

Simple Cables listed above Supported

backupspro BackUPS Pro SubSmart 940−0095A
Supported (note,
see
newbackupspro)

smartvsups SmartUPS VS SubSmart 940−0095A?? Supported

newbackupspro
Smarter BackUPS
Pro

SubSmart 940−0095A Supported

backupspropnp
Smarter BackUPS
Pro

SubSmart 940−0095A Supported

smartups
SmartUPS,
PowerStack 450

Smart
*Smart−Custom,
940−0024C

Supported

apcsmart SmartUPS Smart
*Smart−Custom,
940−0024C

Supported

matrixups MatrixUPS Smart
*Smart−Custom,
940−0024C

Supported

sharesmart
ShareUPS Advanced
Port

Smart
*Smart−Custom,
940−0024C

Unknown status

usb SmartUPS USB Smart
USB (using APC
cable)

Supported in
apcupsd version
3.9.8 and later

* => see the Cables chapter of this manual for instructions on how to build this cable
(Simple−Custom, Smart−Custom, or Smart−RJ45).

Note, in version 3.10.x and later, the "real" values for UPSTYPE are the names of the drivers, and are

APC UPS management under Linux

General Configuration Directives 29

currently dumb, apcsmart, net, usb, snmp, and test. These names can be directly specified on the
UPSTYPE directive. In fact, any of the names provided above such as backups, smartups ... can
also be specified on the UPSTYPE directive, but they will always be translated into one of the basic
driver names. At some point in the future, we will drop all these model names in favor of the simpler
driver names.

UPSCABLE <type of cable you are using>>
[simple | 940−0020B | 940−0023A]
[smart | 940−0024B | 940−0024C]
[940−1524C | 940−0024G | 940−0095A | 940−0095B | 940−0095C | 940−0119A]
[ether | usb]
If you have a Smart or a SubSmart UPS (see table above), and you build your own cable, build a
Smart−Custom cable (see the Cables Chapter of this manual). If you have a Simple UPS, build a
Simple−Custom cable. If you have a BackUPS CS with a RJ45 connector, you can build your own
Custom−RJ45 cable.

The −−with−upscable= option can be used on the

./configure

program to set this directive during the installation.
DEVICE <name of device>

Please specify which device is used for UPS communications (normally a serial port or a USB port.
The default is platform dependent, and is usually something like /dev/ttyS0. For USB ports, you may
specify a port range specification of the form /dev/usb/hid/hiddev[−0−9]. Normally, the ./configure
program will set an appropriate default value, otherwise, you may also specify the
−−with−serial−dev= option on the ./configure program to set this directive during the installation.
If you have specified UPSTYPE net, then the device name to be specified consists of hostname:port
where the hostname is the fully qualified name or IP address of the host (NIS server) and the port
(optional) is the port to use to contact the server.

If you specified UPSTYPE snmp, then the device name becomes hostname:vendor:community.
Please the Support for SNMP UPSes chapter in this manual for more details.

LOCKFILE <path to lockfile>
By supplying this argument, "apcupsd" tries to create a lockfile for the serial port in the specified
directory. This is important to keep two programs from reading or writing the serial port at the same
time. Please note that although the directive name is LOCKFILE, you are actually specifying the lock
file path. Apcupsd automatically appends the name of the device when creating the file. On most
systems, this directive is automatically set by the ./configure program. You may also explicitly set it
during the installation process by using the −−with−lock−dir= option on the ./configure program.

Configuration Directives Used by the Network Information Server

None of these directives are required for proper operation of apcupsd. For the Network Information Server to
work, it must be enabled in the configuration (default) with −−enable−nis.

NETSERVER [on | off]
This configuration directive turns the network information server on or off. If it is on, apcupsd will
spawn a child process that serves STATUS and EVENTS information over the network. This
information is currently used by the Web based CGI programs. The default is on. In some cases, for

APC UPS management under Linux

Configuration Directives Used by the Network Information Server 30

added security, you may want to invoke a separate information server daemon from the inetd daemon.
In that case, NETSERVER should be off.

NISIP <IP−address>
This directive specifies an IP address on which NIS server will listen for incoming connections.
Default value is 0.0.0.0 that means any incoming request will be serviced but if you want it to listen to
a single subnet you can set it up to that subnet address, for example 192.168.10.0 Additionally you
can listen for a single IP like 192.168.10.1. You may also use the −−with−nisip= option on the
./configure program to set this directive during the configuration phase.
This directive does not work on Win32 machines because inet_ipton() is not implemented there.

NISPORT <port>
This configuration directive specifies the port to be used by the apcupsd Network Information Server.
The default is platform dependent, but typically 3551, which we have received from IANA as the
official apcupsd networking port. If you change this port, you must manually change the #define
SERV_TCP_PORT in cgi/upsfetch.c and rebuild the CGI programs. An alternative is to use the
−−with−nis−port= option on the ./configure program during installation. In this case, all the
appropriate locations will be automatically changed.

EVENTSFILE <filename>
If you want the apcupsd network information server to provide the last 10 events via the network,
you must specify a file where apcupsd will save these events. The default is:
/etc/apcupsd/apcupsd.events. Currently, apcupsd will save at most the last 50 events. Periodically
(once an hour by default), apcupsd will check the size of this file. When more than 50 events are
recorded, apcupsd will truncate the file to the most recent 10 events. Consequently this file will not
grow indefinitely. Although we do not recommend it, you may change these values by editing
apcevents.c and changing the appropriate defines. Be aware that if you set these values to very large
numbers, apcupsd may make excessive memory demands on the system during the data access and
file truncation operations. < p>This filename may also be specified at installation time by using the
−−with−log−dir= option on the ./configure program.

Configuration Directives used during Power Failures

In general, none of these directives are required. However, if you have a simple signaling (dumb) UPS with a
cable that does not support the Low Battery signal, you must set the TIMEOUT directive to force a shutdown.
Please see the Simple Signaling features Supported section of this manual for more details.

ANNOY <time in seconds>
Specify the time in seconds between messages requesting logged in users to get off the system during
a power failure. This timer starts only when the UPS is running on batteries. The default is 300
seconds (5 minutes). apcupsd sends the annoy messages by invoking the apccontrol script with the
annoyme argument. The default is to send a wall message on Unix systems and a popup in
Windows. The value of ANNOYDELAY must be greater than the value of ANNOY in order to
receive annoy messages (this doesn't make sense, and means that the default values do not generate
annoy messages −− KES).
Note that if NOLOGON is set to disable the annoy messages will also be disabled.

ANNOYDELAY <time in seconds>
Specify delay time in seconds before apcupsd begins requesting logged in users to get off the system
during a power failure. This timer starts only after the UPS is running on batteries. This timer is reset
when the power returns. The default is 60 seconds. Thus, the first warning to log off the system
occurs after 60 seconds on batteries, assuming that NOLOGON is not set to disable.

NOLOGON <specifies when apcupsd should prevent user logins>
[disable | timeout | percent | minutes | always] are valid types.

APC UPS management under Linux

Configuration Directives used during Power Failures 31

The type specified allows you define the point when apcupsd will create the /etc/nologin file and
thus when user logins are prohibited. Once the /etc/nologin file is created, normal users are prevented
from logging in. Control of when this file is created is important for allowing systems with BIG
UPSes to run as normally until the system administrator determines the need for preventing user
logins. The feature also allows the system administrator to hold the "ANNOY" factor until the
/etc/nologin file is created. The default is always if no b>NOLOGON directive is specified.
As far as I can tell, the only useful types are disable and always since the difference in the time when
the logout warning is given and shutdown occurs for the other types is very short (KES).

disable
prevents apcupsd from creating the nologin file. Consequently, any user can login during a
power failure condition. Also, the ANNOY feature is disabled so users will not be warned to
logoff the system.

timeout
specifies that apcupsd should prohibit logins after the UPS is on batteries for 90% of the time
specified on the TIMEOUT configuration directive. Note! Normally you don't want to
specify a TIMEOUT value, so this option is probably not too useful (KES).

percent
specifies that apcupsd should prohibit logins when the remaining battery charge percentage
reaches 110% or less than the value specified on the BATTERYLEVEL configuration
directive. Thus if the BATTERYLEVEL is specified as 15, apcupsd will prohibit logins
when the battery charge drops below 16% (15% X 110% = 16%).

minutes
specifies that apcupsd should prohibit logins when the remaining runtime in minutes reaches
110% or less than the value specified on the MINUTES configuration directive. Thus if
MINUTES is set to 3, apcupsd will prohibit logins when the remaining runtime is less than 3
minutes (3 X 110% = 3).

always
causes apcupsd to immediately prohibit logins when a power failure occurs. This will also
enable the ANNOY feature.

BATTERYLEVEL <percent of battery>
If BATTERYLEVEL is specified, during a power failure, apcupsd will halt the system when the
remaining battery charge falls below the specified percentage. The default is 5 percent. This directive
is ignored for simple signaling UPSes. To totally disable this counter, set BATTERYLEVEL −1 in
your apcupsd.conf file.

MINUTES <battery runtime in minutes>
If MINUTES is specified, during a power failure, apcupsd will shutdown the system when the
remaining runtime on batteries as internally calculated by the UPS falls below the time specified. The
default is 3. This directive is ignored for simple signaling UPSes. It should be noted that some UPSes
report an incorrect value for remaining runtime when the battery is fully charged. This can be checked
by examining the TIMELEFT value as printed in the output of an apcaccess status command. If the
value is zero or otherwise unreasonable, your UPS is probably broken. In this case, we recommend
that you disable this timer by setting MINUTES −1 in your apcupsd.conf file.

TIMEOUT <time in seconds>
After a power failure, apcupsd will halt the system when TIMEOUT seconds have expired. A value
of zero disables this timer. Normally for all Smart UPS models and dumb UPSes with cables that
support low battery detection, this should be zero so that the shutdown time will be determined by the
battery level and/or remaining runtime (see above) or in the case of a simple signaling UPS, when the
battery is exhausted. This command is required for dumb UPSes that do not provide a battery
exhausted signal (only testing can determine this point). For more information, see the testing section
of this manual. This timer can also be useful if you want some slave machines to shutdown before

APC UPS management under Linux

Configuration Directives used during Power Failures 32

other machines to conserve battery power. It is also useful for testing apcupsd because you can force
a rapid shutdown by setting a small value (e.g. 60) and pulling the plug to the UPS.
When apcupsd is running in master mode (UPSCLASS netmaster), and a shutdown condition is
determined, apcupsd will notify each of the slaves to perform a shutdown then apcupsd will sleep for
30 seconds before issuing the shutdown of its own computer. If you need the master to wait additional
time before shutting down (to allow for shutdown of slower slaves or of slaves running software that
requires more time to shutdown −− e.g. databases), you can do so by adding additional sleep()
commands to /etc/apcupsd/apccontrol in each case that causes a shutdown.
TIMEOUT, BATTERYLEVEL, and MINUTES can be set together without problems. apcupsd
will react to the first case or test that is valid. Normally SmartUPS users will set TIMEOUT to zero
so that the system is shutdown depending on the percentage battery charge remaining
(BATTERYLEVEL) or the remaining battery runtime (MINUTES).

KILLDELAY <time in seconds>
If killdelay is set, apcupsd will continue running after a shutdown has been requested, and after the
specified time in seconds, apcupsd will attempt to shut off the UPS the power. This directive should
normally be disabled by setting the value to zero, but on some systems such as Win32 systems
apcupsd cannot regain control after a shutdown to force the UPS to shut off the power. In this case,
with proper consideration for the timing, the KILLDELAY directive can be useful. Please be aware,
if you cause apcupsd to kill the power to your computer too early, the system and the disks may not
have been properly prepared. In addition, apcupsd must continue running after the shutdown is
requested, and on Unix systems, this is not normally the case as the system will terminate all
processes during the shutdown.

Configuration Directives used to Control System Logging

None of these directives are required.

STATTIME <time>
This directive supplies the time interval between writes to the STATUS file. If set to zero, the
STATUS file will not be written. Please note that in a future version of apcupsd the STATUS file
code will disappear since its functionality has been replaced by the Network Information Server and
by apcaccess status, as a consequence, it is normally disabled by setting it to zero.

STATFILE <file>
This directive specifies the file to be used when writing the STATUS information. The default is
/etc/apcupsd/apcupsd.status

DATATIME<time>
This directives supplies the time interval between writes of PowerChute&tm; like data information to
the log file. See the DATA format specification section of this manual for additional details.

FACILITY <log−facility>
The facility directive can be used to change the system logging class or facility. The default is
DAEMON. This parameter can be useful if you wish to direct the apcupsd system logging
information to other than your system default files. See the logging section of this manual for
additional details.

Configuration Directives for Sharing a UPS

The following directives apply to the master/slave networking mode of apcupsd where multiple machines can
be powered by the same UPS. One machine, the master, will have a serial port connection to the UPS, and the
other machines, the slaves, will obtain their information via the network from the master.

APC UPS management under Linux

Configuration Directives used to Control System Logging 33

Note, as of version 3.10.x, the old master/slave code is by default turned off in the configuration. You must
explicitly enable it by including a −−enable−master−slave option on your ./configure command before
building the source.

In addition to the old master/slave code, there is now a new network driver enabled with −−enable−net
(default disabled) that can be used to control a slave from any version of apcupsd running NIS. This is a much
more flexible system of controlling slaves because a slave machine that also has NIS turned on can thus act as
a master for another slave with −−enable−net turned on. With this mode turned on, the slave obtains the
address of the master from the DEVICE directive, which takes the form hostname[:port] as a consequence,
none of the directives apply for this form of networking. In addition, for this mode to work, you must specify
UPSTYPE net so that the proper driver is loaded.

The remainder of this section presents directives that apply to the old master/slave code that must be enabled
by the enable−master−slave configuration option.

UPSCLASS <class of operation>
[standalone | shareslave | sharemaster] and
[netslave | netmaster] are valid types.
[standalone | netslave | netmaster] are tested classes.
[shareslave | sharemaster] classes are being tested.
The default is standalone and should be used for all machines powered by the UPS and having a
serial port connection to the UPS, but where there are no other computers dependent on power from
the same UPS. This is the normal case.
Use netmaster, if and only if you have a serial port connection to the UPS and there are other
machines deriving power from the same UPS. This is required in all master configuration files.
Use netslave if and only if you have no serial port connection to the UPS, but you derive power from
it. This is required in all slave configuration files, and in this case, you will also have UPSCABLE set
to ether.
Use shareslave if and only if you are using a ShareUPS and connected to a BASIC Port with Simple
Signal. This code is not fully tested.
Use sharemaster, if and only if you are using a ShareUPS and connected to the ADVANCED Port
Smart Signal control. This code is not fully tested.

UPSMODE [disable | share | net | sharenet] are valid types.
[disable | net] are the only known and tested classes.
[share | sharenet] classes are being tested.
For normal standalone operations, you will set UPSMODE to disable to indicate that you are
disabling the master/slave networking.

However, if you are using a single UPS to power several computers and you have configured master
and slave computers, then set this value to net.

Use share for two or seven (2/7) additional simple signal ports on a SmartAccessories(tm)
(internal/external box) for SmartUPSes. The share and sharenet code is not fully tested.

NETTIME <time in seconds>
The interval in seconds that the master uses to send information to slave machines. This rate is
automatically set to 1 second if the UPS goes on batteries and reset to your specified value when the
mains power returns. A typical value might be 60 seconds.

NETPORT <IP port number>
This port number is used for communications in the master/slave networking code. Note that the
master and each slave must have the same port number specified on the NETPORT directive in the

APC UPS management under Linux

Configuration Directives used to Control System Logging 34

configuration file. This port may also be specified during installation by using the −−with−net−port=
option on the ./configure program.
The NETPORT should not be confused with the port number for the Network Information Server
which is specified with the SERVERPORT configuration directive.

MASTER <name of the master> for Slave machines.
Used in slave configuration files, this is the network name of the master which is authorized to send
commands to this slave. In all cases (of which I am aware), when you specify a MASTER directive,
you will also specify UPSCABLE ether since your information about the UPS will come via the
network from a master.
The slave machine will be shutdown whichever occurs first: either at the request of the master when it
does a shutdown or when the values you have specified for TIMEOUT, BATTERYLEVEL, or
MINUTES expire (these should work but have not been fully tested). Consequently, if you want the
slaves to begin shutting down before the master, you can do so by adjusting the values in the
configuration file. If you want the slave to remain up until the master shuts down, you should set
TIMEOUT, BATTERYLEVEL, and MINUTES all to zero.

For proper functioning of the slave, you must specify the same UPSTYPE in the slave configuration
file as is in the master configuration file.

It should be noted that the master and slaves continue to communicate over the network even after the
master has issued a shutdown command to the slaves. This is because the master apcupsd continues
to run until it receives the shutdown signal from the system. This is important to ensure that all the
slaves have been properly notified of the shutdown.

We recommend that the machine names used on the MASTER and SLAVE directives be put in your
/etc/hosts file so that apcupsd will be able to resolve the machine name during startup and shutdown
even if DNS is not running. Alternatively, you can use IP addresses on the MASTER and SLAVE
directives, but this is less flexible.

SLAVE <name of slave(s)> used only in MASTER configuration files.
Used in master configuration files, this is the name of a slave machine that depends on this master.
There can be a maximum of 20 slaves attached to one master. Thus you can specify multiple SLAVE
directives in a master configuration file. Only one slave name can be specified per SLAVE directive,
thus for multiple slaves, specify multiple SLAVE directives.
As noted above the master and slaves continue to communicate over the network even after the master
has issued a shutdown command to the slaves. This is because the master apcupsd continues to run
until it receives the shutdown signal from the system. This is important to ensure that all the slaves
have been properly notified of the shutdown.

We recommend that the machine names used on the MASTER and SLAVE directives be put in your
/etc/hosts file so that apcupsd will be able to resolve the machine name during startup and shutdown
even if DNS is not running. Alternatively, you can use IP addresses on the MASTER and SLAVE
directives, but this is less flexible.

USERMAGIC < user defined magic> used only in SLAVE configuration files.
The USERMAGIC directive is a sort of password that gives a second level of identification security
in a slave configuration file. It is a character string up to 17 characters in length. It should be unique
for each slave. When the slave makes initial contact with the master, this string is passed to the
master. Then on each transmission from the master to the slave, the string is passed back to the slave,
which checks that it is the correct string before accepting the master's information. This string should

APC UPS management under Linux

Configuration Directives used to Control System Logging 35

be different for each and every slave on the network. This directive is not required.

Configuration Directives Used to Set the UPS EPROM

The values specified with the following directives are only used if the −−configure option is specified on the
apcupsd command line, and the UPS is capable of internal EPROM programming. In that case, apcupsd
attempts to set the values into the UPSes EPROM.

Under normal operations, the values for these parameters specified in the configuration file are not used.
Instead, they are read from the UPS EPROM by apcupsd. See the EEPROM programming section of this
manual for further details before attempting to reprogram your EEPROM.

SENSITIVITY <sets sensitivity level>
(H)igh, (M)edium, (L)ow
This value determine how sensitive the UPS is to the mains quality and voltage fluctuations. The
more sensitive it is, the quicker the UPS will switch to battery power when the mains line quality is
bad. Normally, this should be set to H, but if you find your UPS switching to batteries frequently, you
might want to try a less sensitive setting, providing that your computer equipment tolerates the poor
quality mains. This value is written to the UPS EPROM when the configure option is specified.
Under normal apcupsd operations (no −−configure option), apcupsd will read the value stored in the
UPS and display it in the STATUS output.

WAKEUP <set wakeup delay>
The UPS power restart delay value in [0,60,180,300] in seconds after the UPS has shut down during a
power failure. This is to prevent the power from coming back on too quickly after a power down, and
is important for those who have high rpm drives that need to spindown before powering them up
again. Some older SCSI models are very sensitive to this problem. Default is zero. This value is
written to the UPS EPROM when the −−configure option is specified. Under normal apcupsd
operations (no −−configure option), apcupsd will read the value stored in the UPS and display it in
the STATUS output.

SLEEP <set sleep delay>
The UPS delay or grace period in [20,180,300,600] seconds before the UPS cuts the power to your
equipment. The default is 20 seconds. This value is written to the UPS EPROM when the
−−configure option is specified. Under normal apcupsd operations (no −−configure option),
apcupsd will read the value stored in the UPS and display it in the STATUS output.

LOTRANSFER <lower limit of ups batt. transfer>
This sets the low line voltage point at which to switch over to batteries. Different values are permitted
based on the UPS model, classification, and manufacture date. Use apcaccess eeprom to show you
which values are permitted. This value is written to the UPS EPROM when the −−configure option is
specified.
Under normal apcupsd operations (no −−configure option), apcupsd will read the value stored in the
UPS and display it in the STATUS output.

HITRANSFER <upper limit of ups batt. transfer>
This sets the high line voltage point to switch over to batteries.
Different values are permitted based on the UPS model, classification, and manufacture date. Use
apcaccess eeprom to show you which values are permitted. This value is written to the UPS EPROM
when the −−configure option is specified.
Under normal apcupsd operations (no −−configure option), apcupsd will read the value stored in the
UPS and display it in the STATUS output.

RETURNCHARGE <min. batt. charge level>

APC UPS management under Linux

Configuration Directives Used to Set the UPS EPROM 36

This parameter specifies what battery percentage charge is necessary before the UPS will supply
power to your equipment after a power down. Different values are permitted based on the UPS model,
classification, and manufacture date. Use apcaccess eeprom to show you which values are permitted.
This value is written to the UPS EPROM when the −−configure option is specified.
Under normal apcupsd operations (no −−configure option), apcupsd will read the value stored in the
UPS and display it in the STATUS output.

BEEPSTATE <alarm beep state>
This parameter tells the UPS when it can sound its audio alarm. These settings are based on discrete
events related to the remaining capacity of the UPS.
0

immediately upon power failure
T

power failure + 30 seconds /DD>
L

low battery power
N

never
UPSNAME <string>

This is an eight character string.This is the UPS name that will be stored in the UPS EPROM.
This value is written to the UPS EPROM when the −−rename−ups option is specified. Under normal
apcupsd operations (no −−configure option), apcupsd will read the value stored in the UPS and
display it in the STATUS output.

BATTDATE <string>
This is an eight character string that is the last date the batteries were changed.
This value is written to the UPS EPROM when the −−update−battery−date option is specified. Under
normal apcupsd operations (no −−configure option), apcupsd will read the value stored in the UPS
and display it in the STATUS output.

APC UPS management under Linux

Configuration Directives Used to Set the UPS EPROM 37

Configuration Examples

A Simple Configuration for a SmartUPS

You have a Smart UPS using the cable supplied by APC. A very simple configuration file would look like the
following:

apcupsd.conf v1.1
UPSCABLE smart
UPSTYPE smartups
DEVICE /dev/ttyS0
LOCKFILE /var/lock
UPSCLASS standalone
UPSMODE disable

Normally you would have many more configuration directives to completely customize your installation, but
this example shows you the minimum required.

A Simple USB Configuration

apcupsd.conf v1.1
UPSCABLE usb
UPSTYPE usb
DEVICE /dev/usb/hid/hiddev[0−15]
LOCKFILE /var/lock
UPSCLASS standalone
UPSMODE disable

A Simple Master Configuration

You have a Smart UPS using the cable supplied by APC and you want it to act as a master for another
computer, which is powered by the same UPS. A very simple configuration file would look like the following:

apcupsd.conf v1.1 ##
UPSCABLE smart
UPSTYPE smartups
DEVICE /dev/ttyS0
LOCKFILE /var/lock
UPSCLASS netmaster
UPSMODE net
NETTIME 10
NETPORT 6666
SLAVE slave1.mynetwork.com
SLAVE slave2.mynetwork.com

Note, the main difference from the stand alone configuration is that you have specified UPSCLASS
netmaster and UPSMODE net. In addition, you have specified one or more slave machines.

A Simple Slave Configuration

You have a Smart UPS using the cable supplied by APC that is connected to the master machine configured
above. This slave machine has no serial port connection to the UPS, but is powered by the same UPS as the

APC UPS management under Linux

Configuration Examples 38

master. A very simple configuration file would look like the following:

apcupsd.conf v1.1 ##
UPSCABLE ether
UPSTYPE smartups
LOCKFILE /var/lock
UPSCLASS netslave
UPSMODE net
NETPORT 6666
MASTER master.mynetwork.com

The main difference from the master configuration is that you have specified UPSCABLE ether and
UPSCLASS netslave. In addition, you have specified a single controlling master.

In this configuration, the shutdown will be initiated by the master. It is also possible to specify
BATTERYLEVEL, MINUTES, and TIMEOUT configuration directives in the Slave machine that will cause
the slave to shutdown before the master. This can often be useful if the slave is less important than the master
and you wish to reduce battery power consumption so that the master can remain up longer during a power
outage.

Variation on the Master/Slave Configuration

It is also possible to have a Master/Slave configuration where the Slave is powered by a different UPS (or any
other power source), but is nevertheless controlled (i.e. shutdown) by the master. The setup would be identical
to the Master/Slave configuration files shown above. The only difference is where the slave actually receives
its power. In effect, apcupsd does not know or care where the power really comes from.

A Sample Slave Configuration Using the Net Driver

As opposed to the master/slave mode demonstrate above, you can turn any computer into a slave by
configuring with the NIS network driver turned on −−enable−net. Running in this configuration, you can use
any computer with apcupsd running the Network Information Server (NIS) as the master. The slave simply
uses the NIS information to decide when to shutdown. This is a much simpler mode than the older
master/slave code mentioned above.

apcupsd.conf v1.1 ##
UPSCABLE ether
UPSTYPE net
LOCKFILE /var/lock
DEVICE server−network−address:3551
UPSCLASS standalone
UPSMODE disable

where on the DEVICE directive you replace the server−network−address with the fully qualified domain
name or IP address of a machine running apcupsd with NIS enabled (and normally, but not required,
connected to a UPS). The :3551 that follows the server address is the port to use. The default is 3551, but
older versions of apcupsd used port 7000.

Please do not confuse this with a master/slave network configuration that is described above. This is a
master/slave setup, but much simpler (the master does not know about the slaves), and any NIS server, even a
slave, can act as a server to a slave that listens to it.

APC UPS management under Linux

Variation on the Master/Slave Configuration 39

This mode works principally by reading the STATFLAG record that is sent by the NIS (present in the output
of apcaccess). The low 16 bits are the standard APC status flag, and the upper 16 bits represent the internal
state of apcupsd, so the slave can see when the power fails and know when to shutdown.

APC UPS management under Linux

Variation on the Master/Slave Configuration 40

Cables
First, you will need a serial port or USB cable between the APC UPS and your computer running apcupsd. If
you have a USB UPS and a free USB port, you can simply connect your UPS to that port, assume you have a
"smart" or "sub−smart"device, and skip the rest of this section.

Otherwise, you can either use the cable that came with your UPS (the easiest if we support it) or you can make
your own cable. We recommend that you obtain a supported cable directly from APC.

If you already have an APC cable, you can determine what kind it is by examining the flat sides of the two
connectors where you will find the cable number embossed into the plastic. It is generally on one side of the
male connector.

To make your own cable, first, you must know whether you have a Smart UPS that sends ASCII characters
called Smart Signaling, or a "dumb" UPS that uses serial port line voltage signaling, called Simple
Signaling.

The "dumb" UPSes are older models such as the BackUPS (not BackUPS Pro) and the ShareUPS Basic Port
that use Simple Signaling. Most other UPSes (including USB UPSes) use Smart Signaling. If in doubt
consult the Configuration Section of this manual, or the documentation that came with your UPS.

Smart Signaling Cable for SmartUPSes

If you must build your own cable, and you have a Smart UPS, we recommend building a standard 3−lead
RS232C cable as follows:

 SMART−CUSTOM CABLE

 Signal Computer UPS
 DB9F DB9M
 RxD 2 −−−−−−−−−−−−−−−−−−−− 2 TxD Send
 TxD 3 −−−−−−−−−−−−−−−−−−−− 1 RxD Receive
 GND 5 −−−−−−−−−−−−−−−−−−−− 9 Ground

When using this cable with apcupsd specify the following in apcupsd.conf:

 UPSCABLE smart
 UPSTYPE smartups
 DEVICE /dev/ttyS0 (or whatever your serial port is)

Smart Signaling Cable for BackUPS CS Models

If you have a BackUPS CS, you are probably either using it with the USB cable that is supplied or with the
940−0128A supplied by APC, which permits running the UPS in dumb mode. By building your own cable,
you can now run the BackUPS CS models (and perhaps also the ES models) using Smart signaling and have
all the same information that is available as running it in USB mode.

The jack in the UPS is actually a 10 pin RJ45. However, you can just as easily use a 8 pin RJ45 connector,
which is more standard (ethernet TX, and ISDN connector). It is easy to construct the cable by cutting off one
end of a standard RJ45−8 ethernet cable and wiring the other end (three wires) into a standard DB9F female

APC UPS management under Linux

Cables 41

serial port connector.

Below, you will find a diagram for the CUSTOM−RJ45 cable:

 CUSTOM−RJ45 CABLE

 Signal Computer UPS UPS
 DB9F RJ45−8 RJ45−10
 RxD 2 −−−−−−−−−−−−−−−− 1 2 TxD Send
 TxD 3 −−−−−−−−−−−−−−−− 7 8 RxD Receive
 GND 5 −−−−−−−−−−−−−−−− 6 7 Ground

The RJ45−8 pins are: looking at the end of the connector:

 8 7 6 5 4 3 2 1

 | |
 | |
 −−−−−−−−−−−−−−−−−−−
 |____|

The RJ45−10 pins are: looking at the end of the connector:

 10 9 8 7 6 5 4 3 2 1

 | |
 | |
 −−−−−−−−−−−−−−−−−−−−−−−
 |____|

For the serial port DB9F connector, the pin numbers are stamped in the plastic near each pin. In addition,
there is a diagram near the end of this chapter.

When using this cable with apcupsd specify the following in apcupsd.conf:

 UPSCABLE smart
 UPSTYPE smartups
 DEVICE /dev/ttyS0 (or whatever your serial port is)

The information for constructing this cable was discovered and transmitted to us by slither_man. Many
thanks!

Simple Signaling Cable for "dumb" UPSes

NOTE. YOU DO NOT HAVE THIS CABLE UNLESS YOU BUILT IT YOURSELF. THE
SIMPLE−CUSTOM CABLE IS NOT AN APC PRODUCT.

For "dumb" UPSes using Simple Signaling, if you are going to build your own cable, we recommend to make
the cable designed by the Apcupsd team as follows:

 SIMPLE−CUSTOM CABLE

 Signal Computer UPS
 DB9F 4.7K ohm DB9M
 DTR 4 −−[####]−−* DTR set to +5V by Apcupsd

APC UPS management under Linux

Simple Signaling Cable for "dumb" UPSes 42

 |
 CTS 8 −−−−−−−−−−*−−−−−−−−− 5 Low Battery
 GND 5 −−−−−−−−−−−−−−−−−−−− 4 Ground
 DCD 1 −−−−−−−−−−−−−−−−−−−− 2 On Battery
 RTS 7 −−−−−−−−−−−−−−−−−−−− 1 Kill UPS Power

List of components one needs to make the Simple cable:

One (1) male DB9 connector, use solder type connector only.1.
One (1) female DB9/25F connector, use solder type connector only.2.
One (1) 4.7K ohm 1/4 watt 5% resistor.3.
resin core solder.4.
three (3) to five (5) feet of 22AWG multi−stranded four or more conductor cable.5.

− Solder the resistor into pin 4 of the female DB9 connector.

− Next bend the resistor so that it connects to pin 8 of the female DB9 connector.

− Pin 8 on the female connector is also wired to pin 5 on the male DB9 connector. Solder both ends.

− Solder the other pins, pin 5 on the female DB9 to pin 4 on the male connector; pin 1 on the female
connector to pin 2 on the male connector; and pin 7 on the female connector to pin 1 on the male connector.

− Double check your work.

We use the DTR (pin 4 on the female connector) as our +5 volts power for the circuit. It is used as the Vcc
pull−up voltage for testing the outputs on any "UPS by APC" in Simple Signaling mode. This cable may not
work on a BackUPS Pro if the default communications are Smart Signaling mode. This cable is also valid for
"ShareUPS" BASIC Port mode and is also reported to work on SmartUPSes. However, the Smart Cable
described above is much simpler. To have a better idea of what is going on inside apcupsd, for the SIMPLE
cable apcupsd reads three signals and sets three:

Reads:
 CD, which apcupsd uses for the On Battery signal when high.

 CTS, which apcupsd uses for the Battery Low signal when high.

 RxD (SR), which apcupsd uses for the Line Down
 signal when high. This signal isn't used for much.

Sets:
 DTR, which apcupsd sets when it detects a power failure (generally
 5 to 10 seconds after the CD signal goes high). It
 clears this signal if the CD signal subsequently goes low
 −− i.e. power is restored.

 TxD (ST), which apcupsd clears when it detects that the CD signal
 has gone low after having gone high − i.e. power is restored.

 RTS, which apcupsd sets for the killpower signal −− to cause the UPS
 to shut off the power.

Please note that these actions apply only to the SIMPLE cable, the signals used on the other cables are
different.

APC UPS management under Linux

Simple Signaling Cable for "dumb" UPSes 43

Finally, here is another way of looking at the CUSTOM−SIMPLE cable:

APCUPSD SIMPLE−CUSTOM CABLE

Computer Side | Description of Cable | UPS Side
DB9f | DB25f | | DB9m | DB25m
 4 | 20 | DTR (5vcc) *below | n/c |
 8 | 5 | CTS (low battery) *below | <− 5 | 7
 2 | 3 | RxD (no line voltage) *below | <− 3 | 2
 5 | 7 | Ground (Signal) | 4 | 20
 1 | 8 | CD (on battery from UPS) | <− 2 | 3
 7 | 4 | RTS (kill UPS power) | −> 1 | 8
n/c | 1 | Frame/Case Gnd (optional) | 9 | 22

Note: the <− and −> indicate the signal direction.

 Optional connections of original SIMPLE−CUSTOM specification
 that are not used.

 4.7K ohm
 DTR 4 −−[####]−−* Note needed
 |
 RxD 2 −−−−−−−−−−*−−−−−−−−− 3 Not used by Apcupsd

When using this cable with apcupsd specify the following in apcupsd.conf:

 UPSCABLE simple
 UPSTYPE backups
 DEVICE /dev/ttyS0 (or whatever your serial port is)

Other APC Cables that Apcupsd Supports

Apcupsd will also support the following off the shelf cables that are supplied by APC:

940−0020B/C Simple Signal Only, all models.
940−0023A Simple Signal Only, all models.
940−0119A Simple Signal Only, Back−UPS Office, and BackUPS ES.
940−0024[B/C/G] SmartMode Only, SU and BKPro only.
940−0095[A/B/C] PnP (Plug and Play), all models.
940−1524C SmartMode Only
940−0127A/B USB Cables
940−0128A Simple Signal Only, Back−UPS CS in serial mode.

Simple Signaling Features Supported by Apcupsd for Various
Cables

The following table shows the features supported by the current version of Apcupsd (3.8.5 or later) for
various cables running the UPS in Simple Signaling mode.

Cable Power Loss Low Battery Kill Power Cable Disconnected

APC UPS management under Linux

Other APC Cables that Apcupsd Supports 44

940−0020B Yes No Yes No

940−0020C Yes Yes Yes No

940−0023A Yes No No No

940−0119A Yes Yes Yes No

940−0127A Yes Yes Yes No

940−0128A Yes Yes Yes No

940−0095A/B/C Yes Yes Yes No

simple Yes Yes Yes No

Simple UPS Signaling

Apparently, all APC signaling UPSes have the same signals on the output pins of the UPS. The difference at
the computer end is due to different cable configurations. Thus, by measuring the connectivity of a cable, one
can determine how to program the UPS. This is to be verified.

The signals presented or accepted by the UPS on its DB9 connector using the numbering scheme listed above
is:

UPS Pin Signal meaning
 1 <− Shutdown when set by computer for 1−5 seconds.
 2 −> On battery power (this signal is normally low but
 goes high when the UPS switches to batteries).
 3 −> Mains down (line fail) See Note 1 below.
 5 −> Low battery. See Note 1 below.
 6 −> Inverse of mains down signal. See Note 2 below.
 7 <− Turn on/off power (only on advanced UPSes only)

 Note 1: these two lines are normally open, but close when the
 appropriate signal is triggered. In fact, they are open collector
 outputs which are rated for a maximum of +40VDC and 25 mA. Thus
 the 4.7K ohm resistor used in the Custom Simple cable works
 quite well.

 Note 2: the same as note 1 except that the line is normally closed,
 and opens when the line voltage fails.

The Back−UPS Office 500 signals

The Back−UPS Office UPS has a telephone type jack as output, which looks like the following:

Looking at the end of the connector:

 6 5 4 3 2 1

 | |
 | |
 | |−−−−−−−−−−|
 |__|

APC UPS management under Linux

Simple UPS Signaling 45

It appears that the signals work as follows:

 UPS Signal meaning
 1 (brown) <− Shutdown when set by computer for 1−5 seconds.
 2 (black) −> On battery power
 3 (blue) −> Low battery
 4 (red) Signal ground
 5 (yellow) <− Begin signaling on other pins
 6 (none) none

940−0020B Cable Wiring

This diagram is for informational purposes and is not complete. Although we do not know what the black box
semi−conductor contains, we believe that we understand its operation (many thanks to Lazar M. Fleysher for
working this out).

This cable can only be used on simple signaling UPSes, and provides the On Battery signal as well as kill
UPS power. Most recent evidence (Lazar's analysis) indicates that this cable under the right conditions may
provide the Low Battery signal. This is to be confirmed.

APC Part# − 940−0020B

 Signal Computer UPS
 DB9F DB9M
 CTS 8 −−−−−−−−−−−−−−−−−−−− 2 On Battery
 DTR 4 −−−−−−−−−−−−−−−−−−−− 1 Kill power
 GND 5 −−−−−−−−−−−−−−−*−−−− 4 Ground
 |
 −−− *−−−− 9 Common
 DCD 1 −−−−|///|−−−−−−−−−−− 5 Low Battery
 |\\\|
 RTS 7 −−−−|///| (probably a
 −−− semi−conductor)

Thanks to Lazar M. Fleysher for proper

940−0020C Cable Wiring

This diagram is for informational purposes and may not be complete, we don't recommend that use it to build
you build one yourself. This cable can only be used on simple signaling UPSes, and provides the On Battery
signal, the Low Battery signal as well as kill UPS power. In apcupsd versions 3.8.2 and prior, please set your
UPSCABLE to 940−0020B. In version 3.8.3 and later, you may specify the cable as 940−0020C. Please note
that this diagram may not be accurate.

APC Part# − 940−0020C

 Signal Computer UPS
 DB9F DB9M
 CTS 8 −−−−−−−−−−−−−−−−−−−− 2 On Battery
 DTR 4 −−−−−−−−−−−−−−−−−−−− 1 Kill power
 GND 5 −−−−−−−−−−−−−−−*−−−− 4 Ground
 |
 *−−−− 9 Common
 RTS 7 −−−−−[93.5K ohm]−−−−− 5 Low Battery
 or semi−conductor

APC UPS management under Linux

940−0020B Cable Wiring 46

940−0023A Cable Wiring

This diagram is for informational purposes and may not be complete, we don't recommend that use it to build
you build one yourself. This cable can only be used on simple signaling UPSes, and apparently only provides
the On Battery signal. As a consequence, this cable is pretty much useless, and we recommend that you find a
better cable because all APC UPSes support more than just On Battery. Please note that we are not sure the
following diagram is correct.

APC Part# − 940−0023A

 Signal Computer UPS
 DB9F DB9M
 DCD 1 −−−−−−−−−−−−−−−−−−−− 2 On Battery

 3.3K ohm
 TxD 3 −−[####]−*
 |
 DTR 4 −−−−−−−−−*
 GND 5 −−−−−−−−−−−−−−−*−−−− 4 Ground
 |
 *−−−− 9 Common

940−0095A Cable Wiring

This cable is used with the backupspropnp and the newbackupspro. It is the definitive wiring diagram for
the 940−0095A cable submitted by Chris Hanson <cph at zurich.ai.mit.edu>, who disassembled the original
cable, destroying it in the process. He then built one from his diagram and it works perfectly.

Construction and operation of the APC #940−0095A cable.
This cable is included with the APC Back−UPS Pro PNP series.

UPS end Computer end
−−−−−−− −−−−−−−−−−−−
 47k 47k
BATTERY−LOW (5) >−−−−R1−−−−*−−−−R2−−−−*−−−−<DTR,DSR,CTS (4,6,8)
 | |
 | |
 | / E
 | |/
 | B |
 *−−−−−−−| 2N3906 PNP
 |
 |\
 \ C
 |
 |
 *−−−− <DCD (1) Low Batt
 |
 |
 R 4.7k
 3
 |
 4.7k |
SHUTDOWN (1) >−−−−−−−−−−*−−−−R4−−−−*−−−− <TxD (3)
 |

APC UPS management under Linux

940−0023A Cable Wiring 47

 | 1N4148
 *−−−−K|−−−−−−−−− <RTS (7) Shutdown

POWER−FAIL (2) >−−−−−−−−−−−−−−−−−−−−−−−−−− <RxD,RI (2,9) On Batt

GROUND (4,9) >−−−−−−−−−−−−−−−−−−−−−−−−−− <GND (5)

Operation:

* DTR is "cable power" and must be held at SPACE. DSR or CTS may be
 used as a loopback input to determine if the cable is plugged in.

* DCD is the "battery low" signal to the computer. A SPACE on this
 line means the battery is low. This is signalled by BATTERY−LOW
 being pulled down (it is probably open circuit normally).

 Normally, the transistor is turned off, and DCD is held at the MARK
 voltage by TxD. When BATTERY−LOW is pulled down, the voltage
 divider R2/R1 biases the transistor so that it is turned on, causing
 DCD to be pulled up to the SPACE voltage.

* TxD must be held at MARK; this is the default state when no data is
 being transmitted. This sets the default bias for both DCD and
 SHUTDOWN. If this line is an open circuit, then when BATTERY−LOW is
 signalled, SHUTDOWN will be automatically signalled; this would be
 true if the cable were plugged in to the UPS and not the computer,
 or if the computer were turned off.

* RTS is the "shutdown" signal from the computer. A SPACE on this
 line tells the UPS to shut down.

* RxD and RI are both the "power−fail" signals to the computer. A
 MARK on this line means the power has failed.

* SPACE is a positive voltage, typically +12V. MARK is a negative
 voltage, typically −12V. Linux appears to translate SPACE to a 1
 and MARK to a 0.

940−0095B Cable Wiring

This diagram is for informational purposes and may not be complete, we don't recommend that use it to build
you build one yourself.

APC Part# − 940−0095B

 Signal Computer UPS
 DB9F DB9M
 DTR 4 −−−−*
 CTS 8 −−−−|
 DSR 6 −−−−|
 DCD 1 −−−−*
 GND 5 −−−−−−−−−−−−−−−*−−−− 4 Ground
 |
 *−−−− 9 Common
 RI 9 −−−−*
 |
 RxD 2 −−−−*−−−−−−−−−−−−−−− 2 On Battery
 TxD 3 −−−−−−−−−−[####]−−−− 1 Kill UPS Power

APC UPS management under Linux

940−0095B Cable Wiring 48

 4.7K ohm

940−0119A Cable Wiring

This diagram is for informational purposes and may not be complete, we don't recommend that use it to build
you build one yourself. This cable is used with the BackUPS Office UPSes.

APC Part# − 940−0119A

 UPS Computer
 pins pins Signal Signal meaning
 1 (brown) 4,6 DSR DTR <− Shutdown when set by computer for 1−5 seconds.
 2 (black) 8,9 RI CTS −> On battery power
 3 (blue) 1,2 CD RxD −> Low battery
 4 (red) 5 Ground
 5 (yellow) 7 RTS <− Begin signaling on other pins
 6 (none) none

BackOffice ES

The BackUPS ES has a straight through serial cable with no identification on the plugs. To make it work with
apcupsd, specify the UPSCABLE 940−0119A and UPSTYPE backups. The equivalent of cable
940−0119A is done on a PCB inside the unit. Thanks to William Stock for supplying us with the information
about the straight through cable, the PCB, and the following diagram:

computer −−−−−−−−−−− BackUPS−ES −−−−−−−−−−−−−−−−−
 DB9−M DB−9F
 pin signal pin

 4 DSR −> 4 −−+
 | diode resistor
 6 DTR −> 6 −−+−−−−>|−−−−/\/\/\−−−o kill power

 1 DCD 7 −−−−−−−−+−−/\/\/\−−+
 |
 +−−/\/\/\−−+
 |
 8 RI

BackUPS ES and CS in Serial mode with Cable 940−0128A

Though these UPSes are USB UPSes, APC supplies a serial cable (typically with a green DB9 F connector)
that has 940−0128A stamped into one side of the plastic serial port connector. The other end of the cable is a
10 pin RJ45 connector that plugs into the UPS (thanks to Dean Waldow for sending me a cable!). Apcupsd
version 3.8.5 and later supports this cable when specified as UPSCABLE 940−0128A and UPSTYPE
backups. However, running in this mode much of the information that would be available in USB mode is
lost. In addition, when apcupsd attempts to instruct the UPS to kill the power, it begins cycling about 4 times
a second between battery and line. The solution to the problem (thanks to Tom Suzda) is to unplug the UPS
and while it is still chattering, press the power button (on the front of the unit) until the unit beeps and the
chattering stops. After that the UPS should behave normally and power down 1−2 minutes after requested to
do so.

APC UPS management under Linux

940−0119A Cable Wiring 49

An amazing discovery by slither_man allows one to build a CUSTOM−RJ45 cable (documented above) and
run the BackUPS CS (and probably also the ES) in Smart mode. Running it this way provides all the same
information that you would get by running it in USB mode. As a consequence, we recommend that you either
purchase (where I don't know) or build your own CUSTOM−RJ45 cable rather than use the 940−0128A cable.

Thanks to all the people who have helped test this and have provided information on the cable wiring, our best
guess for the cable schematic is the following:

computer −−−−−−−−− Inside the Connector−−−−−−−−− UPS
 DB9−F | | RJ45
 pin − signal | | Pin − Color
 | |
 4 DSR −>|−−−+ |
 | | diode resistor |
 6 DTR −>|−−−+−−−−>|−−−−/\/\/\−−−o kill power | 8 Orange
 | |
 1 DCD |−−−−−−−−−−+−−/\/\/\−−+ |
 | | |
 | +−−/\/\/\−−+ |
 | | |
 8 RI

Win32 Implementation Restrictions for Simple UPSes

Due to inadequacies in the Win32 API, it is not possible to set/clear/get all the serial port line signals.
apcupsd can detect: CTS, DSR, RNG, and CD. It can set and clear: RTS and DTR.

This imposes a few minor restrictions on the functionality of some of the cables. In particular, LineDown on
the Custom Simple cable, and Low Battery on the 0023A cable are not implemented.

Internal Apcupsd Actions for Simple Cables

This section describes how apcupsd 3.8.5 (March 2002)
treats the serial port line signals for simple cables.

apcaction.c:
 condition = power failure detected
 cable = CUSTOM_SIMPLE
 action = ioctl(TIOCMBIS, DTR) set DTR (enable power bit?)

apcaction.c:
 condition = power back
 cable = CUSTOM_SIMPLE
 action = ioctl(TIOCMBIC, DTR) clear DTR (clear power bit)
 action = ioctl(TIOCMBIC, ST) clear ST (TxD)

apcserial.c:
 condition = serial port initialization
 cable = 0095A, 0095B, 0095C
 action = ioctl(TIOMBIC, RTS) clear RTS (set PnP mode)

 cable = 0119A, 0127A, 0128A
 action = ioctl(TIOMBIC, DTR) clear DTR (killpower)

APC UPS management under Linux

Win32 Implementation Restrictions for Simple UPSes 50

 action = ioctl(TIOMBIS, RTS) set RTS (ready to receive)

apcserial.c:
 condition = save_dumb_status
 cable = CUSTOM_SIMPLE
 action = ioctl(TIOMBIC, DTR) clear DTR (power bit?)
 action = ioctl(TIOMBIC, RTS) clear RTS (killpower)

 cable = 0020B, 0020C, 0119A, 0127A, 0128A
 action = ioctl(TIOMBIC, DTR) clear DTR (killpower)

 cable = 0095A, 0095B, 0095C
 action = ioctl(TIOMBIC, RTS) clear RTS (killpower)
 action = ioctl(TIOMBIC, CD) clear DCD (low batt)
 action = ioctl(TIOMBIC, RTS) clear RTS (killpower) a second time!

apcserial.c:
 condition = check_serial

 cable = CUSTOM_SIMPLE
 action = OnBatt = CD
 action = BattLow = CTS
 action = LineDown = SR

 cable = 0020B, 0020C, 0119A, 0127A, 0128A
 action = OnBatt = CTS
 action = BattLow = CD
 action = LineDown = 0

 cable = 0023A
 action = Onbatt = CD
 action = BattLow = SR
 action = LineDown = 0

 cable = 0095A, 0095B, 0095C
 action = OnBatt = RNG
 action = BattLow = CD
 action = LineDown = 0

apcserial.c
 condition = killpower

 cable = CUSTOM_SIMPLE, 0095A, 0095B, 0095C
 action = ioctl(TIOMCBIS, RTS) set RTS (kills power)
 action = ioctl(TIOMCBIS, ST) set TxD

 cable = 0020B, 020C, 0119A, 0127A, 0128A
 action = ioctl(TIOMCBIS, DTR) set DTR (kills power)

RS232 Wiring and Signal Conventions

DB−25
Pin #

DB−9
Pin #

Name DTE−DCE Description

1 −− FG
−−− Frame Ground/Chassis
GND

APC UPS management under Linux

RS232 Wiring and Signal Conventions 51

2 3 TD
−−−> Transmitted Data,
TxD

3 2 RD <−−− Received Data, RxD

4 7 RTS −−−> Request To Send

5 8 CTS <−−− Clear To Send

6 6 DSR <−−− Data Set Ready

7 5 SG −−−− Signal Ground, GND

8 1 DCD <−−− Data Carrier Detect

9 −− −−
−−− Positive DC test
voltage

10 −− −−
−−− Negative DC test
voltage

11 −− QM <−−− Equalizer mode

12 −− SDCD
<−−− Secondary Data
Carrier Detect

13 −− SCTS
<−−− Secondary Clear To
Send

14 −− STD
−−−> Secondary
Transmitted Data

15 −− TC
<−−− Transmitter (signal)
Clock

16 −− SRD
<−−− Secondary Receiver
Clock

17 −− RC
−−−> Receiver (signal)
Clock

18 −− DCR
<−−− Divided Clock
Receiver

19 −− SRTS
−−−> Secondary Request
To Send

20 4 DTR −−−> Data Terminal Ready

APC UPS management under Linux

RS232 Wiring and Signal Conventions 52

21 −− SQ <−−− Signal Quality Detect

22 9 RI <−−− Ring Indicator

23 −− −− −−−> Data rate selector

24 −− −− <−−− Data rate selector

25 −− TC <−−− Transmitted Clock

Pin Assignment for the Serial Port (RS−232C), 25−pin and 9−pin, Female End

 13 1 5 1
 _______________________________ _______________
 \ / \ / RS232−connectors
 \ / \ / looking into the
 −−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−− end of the cable.
 25 14 9 6

 The diagram above represents the Female end of the cable. The
 male end is the same, but looking from inside the cable.

 DTE : Data Terminal Equipment (i.e. computer)
 DCE : Data Communications Equipment (i.e. UPS)
 RxD : Data received; 1 is transmitted "low", 0 as "high"
 TxD : Data sent; 1 is transmitted "low", 0 as "high"
 DTR : DTE announces that it is powered up and ready to communicate
 DSR : DCE announces that it is ready to communicate; low=modem hang−up
 RTS : DTE asks DCE for permission to send data
 CTS : DCE agrees on RTS
 RI : DCE signals the DTE that an establishment of a connection is attempted
 DCD : DCE announces that a connection is established

Ioctl to RS232 Correspondence

#define TIOCM_LE 0x001
#define TIOCM_DTR 0x002
#define TIOCM_RTS 0x004
#define TIOCM_ST 0x008
#define TIOCM_SR 0x010
#define TIOCM_CTS 0x020
#define TIOCM_CAR 0x040
#define TIOCM_RNG 0x080
#define TIOCM_DSR 0x100
#define TIOCM_CD TIOCM_CAR
#define TIOCM_RI TIOCM_RNG
#define TIOCM_OUT1 0x2000
#define TIOCM_OUT2 0x4000

APC UPS management under Linux

RS232 Wiring and Signal Conventions 53

Invoking Apcupsd

The simplest way to invoke apcupsd is from the command line by entering:

/sbin/apcupsd

To do so, you must be root. However, normally, you will want apcupsd started automatically when your
system boots. On some systems with installation support (e.g. S.u.S.E and RedHat), the installation procedure
will create a script file that you will be automatically invoked when your system reboots. On other systems,
you will have to invoke apcupsd from your rc.local script.

Invoking Apcupsd on RedHat systems

On RedHat systems, this script file that automatically invokes apcupsd on system start and stops is:

/etc/rc.d/init.d/apcupsd

To start apcupsd manually (as you will probably do immediately following the installation), enter the
following:

/etc/rc.d/init.d/apcupsd start

To understand how this file is automatically invoked at system startup and shutdown, see the man pages for
chkconfig.

Invoking Apcupsd on SuSE systems

On SuSE systems, the script file that automatically invokes apcupsd on system start and stops is:

/etc/rc.d/apcupsd

To start apcupsd manually (as you will probably do immediately following the installation), enter the
following:

/etc/rc.d/apcupsd start

APC UPS management under Linux

Invoking Apcupsd 54

Stopping Apcupsd

Normally, when properly installed, apcupsd will be started and stopped automatically by your system.
Unfortunately, the details are different for each system. Below, we give the commands for selected systems.
Alternatively, there are simple stopapcupsd and startapcupsd scripts in the examples directory, or you can
modify one of the scripts in the distributions directory to meet your needs.

To stop apcupsd you can do the following:

On RedHat systems:

/etc/rc.d/init.d/apcupsd stop

On SuSE systems:

/etc/rc.d/apcupsd stop

APC UPS management under Linux

Stopping Apcupsd 55

Testing Apcupsd

Simple Signaling UPSes (sometimes called Dumb UPSes)

The following testing procedures apply for the most part to Smart UPSes. If you have a simple signaling UPS
such as a BackUPS or other non−Smart UPS, your testing procedures will be somewhat different (Smart
UPSes include SmartUPS and MatrixUPS models). For example, for simple signaling (Dumb) UPSes,
apcupsd is not currently able to detect whether or not the serial cable is connected. In addition, some simple
signaling UPSes with certain cable combinations are not able to detect the low battery condition. For more
details please see the Cable Chapter of this manual, an more specifically, the Cable Modes section. Many of
the other testing features should work similar to described below. However, since it is easy to configure the
cable incorrectly and thus have premature shutdowns of the UPS power, we strongly recommend, especially
for simple signaling (Dumb) UPSes, that you do most of the initial testing with your computer plugged into
the wall rather than your UPS. Thus if the UPS power is suddenly shutoff, your computer will continue to run.
We also recommend using the safe−apccontrol as described below, until you are sure that the signaling is
correct.

Please note that if launch the execution of apcupsd while your simple signaling UPS is on battery power, it is
very likely that your UPS will immediately shut off the power. This is due to the initialization of the serial
port line signals.

Determining Which Simple Signaling Cable You Have

The most frequently encountered problem with Simple Signaling UPSes (e.g. BackUPS 650) is that you
have incorrectly specified which cable is being used. For a simple signaling (dumb) UPS, it is important to
know what cable you have. All cables furnished by APC have the cable number stamped on the side of the
computer connector end of the cable. Using this number with apcupsd will normally work fine.

If you do not know what cable you have, you can use the apctest program to determine the type of cable that
you have. Please see the apctest Chapter of this manual for the details of running apctest.

For simple signaling UPSes, you should NOT use simple in the cable specification (i.e. UPSCABLE simple)
unless you have made the cable yourself according to the wiring diagram given in the cables chapter of this
manual.

Smart UPSes

Most of rest of this chapter concerns testing Smart UPSes. As noted above many of these tests will apply with
certain restrictions to Simple Signaling (dumb) UPSes.

USB port

Please see the USB Chapter of this manual for details of testing connections to a USB port. Once you have the
UPS and the computer connected, most of the testing procedures described here apply equally well to USB
UPSes.

APC UPS management under Linux

Testing Apcupsd 56

Checking the Installation

Before continuing, please first read the section Checking the Installation in the Installation Section of this
manual.

Establishing Serial Port Connection

Once you have compiled, installed, and invoked apcupsd, you should wait to allow apcupsd to configure
itself and establish contact with the UPS.

If you see the following message about 30 seconds after starting apcupsd:

apcupsd FATAL ERROR in apcserial.c at line 156
PANIC! Cannot communicate with UPS via serial port.

it means that apcupsd tried for about 30 seconds to establish contact with the UPS via the serial port, but was
unable to do so. Before continuing, you must correct this problem. Some of the possible sources of the
problem are:

You have not configured the correct serial port name on the DEVICE directive in your
/etc/apcupsd/apcupsd.conf configuration file.

•

The serial port that you have chosen has logins enabled. You must disable logins on that port,
otherwise, the system prevents apcupsd from using it. Normally, the file /etc/inittab specifies the
ports for which a getty process is started (on Sun machines, the serial port program equivalent to
getty is called ttymon). You must disable this for the port that you wish to use.

•

Make sure you are doing your testing as root otherwise, you may have permissions problems
accessing the serial port.

•

You may have cabling problems, either with an incorrect cable, or the incorrect cable specification
directive in the configuration file.

•

You may have a problem with the /etc/apcupsd/acpupsd.conf file. For example, check that you have
specified the correct type of UPS and the correct networking directives. For more details, see the
Configuration Section of this manual.

•

If you have a SmartUPS 5000 RM 15U or similar model, that comes with a "Web/SNMP
management card" in one of the "Smart Slots", this card may interfere with the serial port operation. If
you are having problems, please remove this card and try again. Supposedly V3.0 of the card
firmware has been corrected to properly release the serial port.

•

Ensure that you have no other programs that are using the serial port. One user reported that he had
problems because the serial port mouse (gpm) was using the same port as apcupsd. This causes
intermittent seemingly random problems.

•

If you are using a WinNT or Win2000 machine, the OS is probably attempting to attach a serial
mouse to the port you are using (COM1 or COM2). To prevent this, edit your c:\boot.ini file, and you
will find a line that looks something like the following:

•

multi(0)disk(0)rdisk(0)partition(1)\WINNT="Windows NT Workstation Version 4.00"

Add the following to the end of the line: /NoSerialMice:COM1 (or COM2) so that the new line looks
like:

multi(0)disk(0)rdisk(0)partition(1)\WINNT="Windows NT Workstation Version 4.00"
/NoSerialMice:COM1

APC UPS management under Linux

Checking the Installation 57

If you are using a WinNT or Win2000 machine, try connecting apcupsd to COM2 rather than COM1
(be sure to change your c:\apcupsd\etc\apcupsd\apcupsd.conf to reflect the change).

•

If you are using a Solaris machine, you may have similar problems as described above for the WinNT
machine. A possible fix is documented in the Sun section of the Configuration chapter of this manual.

•

Try connecting your UPS to another machine. If it works, then you probably have a bad serial port
card. As unlikely as this may sound, at least two of our users have had to replace bad serial port cards.

•

Try doing an lsof /dev/ttyS0 where you replace the /dev/ttyS0 with your serial port name. If you get
no output, the port is free (or there is no physical port). If you get output, then another program is
using the port, and you should see which one.

•

Try doing a dmesg | grep tty. This may show you if a program has grabbed the port. (Thanks to Joe
Acosta for the suggestion.)

•

If all else fails, make sure your system is configured for serial port support.•
If you are running Linux, check your /proc file system. For example: cat /proc/devices should print
something like 4 ttyS if you have a serial port. If your serial port is working, a cat /proc/interrupts
should show the serial port usage (e.g. 4: 294553 XT−PIC serial) Also, cat /proc/ioports should
show up something like 03f8−03ff : serial(auto). Or, cat /proc/tty should print a line like serial
/dev/ttyS 4 64−127 serial. Finally, a cat /proc/tty/driver/serial should print something like the
following:
serinfo:1.0 driver:5.05c revision:2001−07−08
0: uart:16550A port:3F8 irq:4 baud:9600 tx:1503168 rx:1461721 fe:8 RTS|DTR|RI

•

The first thing to do is to look at your log file, usually /var/log/messages because apcupsd writes more
detailed information to the log file whenever there is an error.

If you have a UPS that uses SubSmart or Smart protcol (see the Configuration section for a list of the UPSes
using these protocols), you can manually test the serial communications with the UPS by starting a serial port
communications program (such as minicom, tip, or cu) with the settings 2400 8N1 (2400 baud, 8 bits, no
parity, 1 stop bit). Be extremely careful what you send to your UPS as certain characters may cause it to
power down or may even cause damage to the UPS. Try sending an upper case Y to the UPS (without a return
at the end). It should respond with SM. If this is not the case, review the possible problems listed above. If
you fat finger the Y and enter y instead, no cause for alarm, you will simply get the APC copyright notice.

Once you are sure that serial port communications is working, proceed to the next test.

PS Test

After you start apcupsd, execute the following command:

ps fax

or the equivalent for your system. If you are running on Linux and using the fork()ing version of apcupsd, you
should something similar to the following output.

4492 ? S 0:00 apcmain −f /etc/apcupsd/apcupsd.conf
4496 ? S 0:00 _ apcser −f /etc/apcupsd/apcupsd.conf
4497 ? S 0:00 _ apcnis −f /etc/apcupsd/apcupsd.conf

This indicates that apcupsd is up and running and has started the two (default) child processes.

apcmain

APC UPS management under Linux

PS Test 58

is the main program that waits until it receives a termination signal (SIGTERM) or one of the child
processes dies.

apcser
is the process that manages the serial port and takes any actions (generates events) that are necessary
as a result of a change of state of the UPS.

apcnis
is the Network information server process that provides EVENTS and STATUS information over the
network. This information is used by the CGI programs.

If you are running on a non−Linux system, or using pthreads on a Linux system (recommended), your output
will probably not show the names of the processes and will appear more like the following:

 632 ? S 0:00 /sbin/apcupsd −f /etc/apcupsd/apcupsd.conf
 841 ? S 0:00 _ /sbin/apcupsd −f /etc/apcupsd/apcupsd.conf
 842 ? S 0:00 _ /sbin/apcupsd −f /etc/apcupsd/apcupsd.conf

Logging Test

Once you have established that the proper processes are running, do a tail of the system log file, normally
/etc/var/messages:

tail /etc/var/messages

You should see output that looks similar to the following:

Dec 5 17:01:05 matou apcupsd[5917]: apcupsd 3.7.2 startup succeeded

And if you have configured the network information server, you should also see:

Dec 5 17:01:05 polymatou apcupsd[5975]: apcserver startup succeeded

These messages should also appear in the temporary EVENTS file (/etc/apcupsd/apcupsd.events) if you are
using the default configuration file.

apcaccess Test

This test consists of running apcaccess to see if apcupsd is properly updating its internal variables. Please
note that if you are running a pthreaded version of apcupsd (installed from rpm or −−enable−pthreads on the
./configure line), you must enable the apcupsd Network Information Server in your configuration file for
apcaccess to work.

To run the apcaccess test, use the following command:

apcaccess status

Depending on the type of UPS you have, you will get slightly different output, but an example For a
Smart−UPS is as follows:

APC : 001,048,1088
DATE : Fri Dec 03 16:49:24 EST 1999
HOSTNAME : daughter

APC UPS management under Linux

Logging Test 59

RELEASE : 3.7.2
CABLE : APC Cable 940−0024C
MODEL : APC Smart−UPS 600
UPSMODE : Stand Alone
UPSNAME : SU600
LINEV : 122.1 Volts
MAXLINEV : 123.3 Volts
MINLINEV : 122.1 Volts
LINEFREQ : 60.0 Hz
OUTPUTV : 122.1 Volts
LOADPCT : 32.7 Percent Load Capacity
BATTV : 26.6 Volts
BCHARGE : 095.0 Percent
MBATTCHG : 15 Percent
TIMELEFT : 19.0 Minutes
MINTIMEL : 3 Minutes
SENSE : Medium
DWAKE : 000 Seconds
DSHUTD : 020 Seconds
LOTRANS : 106.0 Volts
HITRANS : 129.0 Volts
RETPCT : 010.0 Percent
STATFLAG : 0x08 Status Flag
STATUS : ONLINE
ITEMP : 34.6 C Internal
ALARMDEL : Low Battery
LASTXFER : Unacceptable Utility Voltage Change
SELFTEST : NO
STESTI : 336
DLOWBATT : 05 Minutes
DIPSW : 0x00 Dip Switch
REG1 : N/A
REG2 : N/A
REG3 : 0x00 Register 3
MANDATE : 03/30/95
SERIALNO : 13035861
BATTDATE : 05/05/98
NOMOUTV : 115.0
NOMBATTV : 24.0
HUMIDITY : N/A
AMBTEMP : N/A
EXTBATTS : N/A
BADBATTS : N/A
FIRMWARE : N/A
APCMODEL : 6TD
END APC : Fri Dec 03 16:49:25 EST 1999

For a simple signaling or dumb UPS such as BackUPS, your output will be very minimal as follows:

APC : 001,012,0319
DATE : Mon Feb 18 09:11:50 CST 2002
RELEASE : 3.8.5
UPSNAME : UPS_IDEN
CABLE : APC Cable 940−0128A
MODEL : BackUPS
UPSMODE : Stand Alone
STARTTIME: Mon Feb 18 09:11:45 CST 2002
LINEFAIL : OK
BATTSTAT : OK
STATFLAG : 0x008 Status Flag

APC UPS management under Linux

Logging Test 60

END APC : Mon Feb 18 09:15:01 CST 2002

If you see the above output, it is a good sign that apcupsd is working. Assuming that the output looks
reasonable, check the following variables:

LINEV
This is the line voltage and it should be a value that is appropriate for your equipment. In the USA, it
is typically about 120 Volts while in Europe, it is about 220 Volts.

BATTV
Unless you have additional battery packs, this should be near 24 Volts plus or minus 5 Volts.

STATUS
This is the status of the UPS and it should normally be ONLINE.

If you see a message to the effect of:

attach_shmarea: shared memory version mismatch (or UPS not yet ready to report)

or if all the displayed values are zero, you have not waited long enough. Wait a bit longer and then re−execute
the apcaccess status command.

If you see a message to the effect of:

APCACCESS FATAL ERROR in apcaccess.c at line 336
tcp_open: cannot connect to server localhost on port 3551.

It means that you have probably not enabled NIS in apcupsd.

Communications Test

At this point, you should ensure that apcupsd is handling the serial port correctly. This test assumes you have
a Smart UPS. If you have a simple signaling UPS, please skip to the next section (Simulated Power Fail Test).

When apcupsd detects a problem, it generates an EVENT, which consists of sending a message to the system
log then invoking the apccontrol script (normally in /etc/acpupsd/apccontrol) to handle the event.

In order to create an event, remove the serial port plug from the back of your computer or from the back of the
UPS. Within 6 seconds, apcupsd should detect the lack of serial port communications and broadcast a wall
message indicating that the serial port communications was lost:

Warning serial port communications with UPS lost.

At the same time, it sends the same message to the system log and to the temporary EVENTS file
(/etc/apcupsd/apcupsd.events).

Plug the serial port plug back into your computer, and within about 12 seconds, apcupsd should reestablish
communications and broadcast and log the following message:

Serial communications with UPS restored.

If these messages are logged but not broadcast, either you have your mesg permission set to no (see man
wall) or there is a problem with apccontrol. If you are running a window manager such as GNOME and don't

APC UPS management under Linux

Communications Test 61

have a console window open, you may not receive the wall messages. However, you should find them in your
system log file (normally /var/log/messages and in the temporary EVENTS file,
/etc/apcupsd/apcupsd.events. For example, to observe these events in the temporary EVENTS file, you
might do a

tail −f /etc/apcupsd/apcupsd.events

before running the test.

If you do not observe these messages, you should correct this problem before proceeding with additional tests.

Simulated Power Fail Test

At this point, you should verify that in the event of a power fail apcupsd properly calls apccontrol. This test
is appropriate for all models of UPSes (Smart or dumb).

To avoid the possibility that apcupsd might shutdown your system, locate where apccontrol resides on your
system (normally, /etc/apcupsd/apccontrol. Move this script to another location e.g. apccontrol.save and
replace it with the script found in examples/safe.apccontrol. When that is done, ensure that your UPS battery
is fully charged and that you have at least 5 minutes of remaining runtime on the batteries. This can be done
by examining the values of the BATTCHG and TIMELEFT variables in the printout of apcaccess status.

Athough this should not be necessary, as an extra precaution, you can shutdown your machine, remove the
plug from the UPS you are testing, and plug your machine into another UPS or directly into the wall. Doing
so, will ensure that the UPS doesn't cut the power to your machine at a bad time. Remember at the end of the
testing to plug your machine back into the UPS.

To begin the test, pull the power plug from the UPS. The first time that you do this, psychologically it won't
be easy, but after you have pulled the plug a few times, you may even enjoy it as I do. If all goes well,
apcupsd should detect the power failure and print several warning messages. The first should appear after 5 to
6 seconds and read:

Warning power loss detected.

Then generally 6 seconds later, apcupsd is sure that it isn't a transient effect, so it sends:

Power failure. Running on UPS batteries.

After a few more seconds (total around 15 seconds), plug the power cord back in and ensure that apcupsd is
aware that the power has returned. It should print:

Power has returned...

If you do not observe the above messages, please correct the situation before proceeding. The most likely
cause of problems are:

apcupsd doesn't recognize the power failure because the configuration directives are not correct. E.g.
wrong cable.

•

The file /etc/apcupsd/apccontrol doesn't exist or is not marked as executable.•

APC UPS management under Linux

Simulated Power Fail Test 62

At this point, we recommend that you do a simulated power down of your system. If you are adventuresome
or have been through this before, skip to the next section in this manual and do the real power fail shutdown.
If you continue with the simulated power down and if all goes well, apcupsd will go through all the motions
without actually shutting down the system. Continue using the safe apccontrol that you installed. Edit the
configuration file /etc/apcupsd/apcupsd.conf and change the value of TIMEOUT from 0 to something like
30. Doing so will cause apcupsd to attempt to shutdown the system 30 seconds after it detects a power
failure. Once this change has been made, you must stop and restart apcupsd for the new configuration value
to take effect.

Once again, pull the power plug, and if all goes as expected, apcupsd should attempt to shutdown the system
about 30 seconds after it detects the power failure. All the messages should be displayed by wall or by the tail
−f command. The precise message is determined by what is printed in /etc/apcupsd/apccontrol for the
doshutdown event. Though it varies from system to system, it will generally be something like:

Beginning Shutdown Sequence

When apcupsd this message prints, reconnect the power. apcupsd should detect that the power has been
restored and attempt to cancel the shutdown.

IMPORTANT after this test, please replace the changed apccontrol and apcupsd.conf with the original
files.

System Shutdown Test

This is an intermediate test that you can do, for all UPS models before doing the Full Power Down Test. First
modify the /etc/apcupsd/apccontrol file so that in the killpower) case, the line that re−executes apcupsd
with the −−killpower option is commented out. The original line probably looks something like:

 ${APCUPSD} −−killpower

when it is commented out, it looks like:

${APCUPSD} −−killpower

Now when you pull the power plug, and either the timer expires or the batteries are exhausted (see the next
section for more details), the system should be fully shutdown.

After performing this test, please be sure to restore /etc/apcupsd/apccontrol to its previous state.

Full Power Down Test

To complete the testing, you should do a power fail shutdown of your system. This test is applicable to all
UPS models. Please do a backup of your system or take other precautions before attempting this to avoid the
possibility of lost data due to a problem (I have been through this at least 10 times and never once had
problems, but we all know that someday something will go wrong).

Before proceeding, please ensure that your halt script or the equivalent has been properly updated by the
install process to contain the logic to call apcupsd −−killpower when it detects a power failure situation (the
presence of a /etc/powerfail file). See the install section of this manual, or the README files for additional
details about the halt modifications necessary.

APC UPS management under Linux

System Shutdown Test 63

When you are ready to do the test, either simply pull the plug and wait for the batteries to become exhausted,
or set the TIMEOUT configuration directive to something like 60 so that the system will shutdown before the
batteries are exhausted. We recommend doing the full shutdown without using TIMEOUT to correctly
simulate a real power failure, but the choice is yours (I did it once here, but now use TIMEOUT 30).

If all goes well, your system should be shutdown before the batteries are completely exhausted and the UPS
should be powered off by apcupsd. Please be aware that if you do the full power down, you must ensure that
your UPS is totally powered off. Otherwise, it may have been given the command to power off, but due to a
long grace period it is still waiting. If you were to reboot your computer during the grace period, the UPS
could then suddenly turn off the power (this happened to me). To avoid this problem, always wait for your
UPS to power itself off, or power if off manually before restarting your computer. On my system, the UPS is
configured as at the factory to have a 180 second grace period before shutting off the power. During this type
of testing, 180 seconds seems like an eternity, so please take care to either wait or manually power off your
UPS. To determine what grace period is programmed into your UPS EEPROM, run apcaccess eprom and
look at the "Shutdown grace delay".

Automatic Reboot of your Computer after a Power Shutdown

If you have succeeded in getting apcupsd to power down the UPS as described above, you will most likely
want your computer to automatically reboot when the power returns. Please see the Automatic Reboot section
of the Shutdown Chapter of this manual for the details.

Shutdown Sequence

If you experienced so problems with the above testing procedures, or if you are porting apcupsd to another
system, or you are simply curious, you may want to know exactly what is going on during the shutdown
process. If so, please see the Shutdown Chapter of this manual.

Testing the CGI Programs

Please see the CGI Programs chapter of this manual for how to test the Network Information Server and the
CGI programs.

Recalibrating the UPS Runtime

This section does not apply to simple signaling or dumb UPSes such as the BackUPS.

Smart UPSes internally compute the remaining runtime, and apcupsd uses the value supplied by the UPS. As
the batteries age (after say two or three years), the runtime computation may no longer be accurate since the
batteries no longer hold the same charge. As a consequence, in the event of a power failure, the UPS and thus
apcupsd can report a runtime of 5 minutes remaining when in fact only one minute remains. This can lead to
a shutdown before you might expect it, because regardless of the runtime remaining that is reported, the UPS
will always correctly detect low batteries and report it, thus causing apcupsd to correctly shutdown your
computer.

If you wish have the UPS recalibrate the remaining runtime calculations, you can do so manually as the
current version of apcupsd does not support this feature. To do so,

Shutdown apcupsd•

APC UPS management under Linux

Automatic Reboot of your Computer after a Power Shutdown 64

contact your UPS directly using some terminal program such as minicom, tip, or cu with the settings
2400 8N1 (2400 baud, 8 bits, no parity, 1 stop bit). Be extremely careful what you send to your UPS
as certain characters may cause it to power down or may even cause damage to the UPS. Try sending
an upper case Y to the UPS (without a return at the end). It should respond with SM. If this is not the
case, read the chapter on testing. If you fat finger the Y and enter y instead, no cause for alarm, you
will simply get the APC copyright notice.

•

when you are sure you are properly connected send an upper case D (no cr). This will put the UPS
into calibration mode, and it will drain the battery down to 25% capacity (35% for a Matrix) at which
point it will go back on the mains. In doing so, it will recompute the runtime calibration.

•

If you wish to abort the calibration, enter a second D command.•
When you are done, restart apcupsd.•

In principle, you should be able to do this with the computer powered by the UPS, but if you wish to be
completely safe, you should plug your computer into the wall prior to performing the runtime calibration. In
that case, you will need to artificially load the UPS with light bulbs or other means. You should supply a load
of about 30 to 35% but not more than 50%. You can determine the load by looking at the output of the
apcaccess status command while apcupsd is running.

You should not run the recalibration command more than once or twice per year as discharging these kinds of
batteries tends to shorten their life span.

APC UPS management under Linux

Automatic Reboot of your Computer after a Power Shutdown 65

Trouble Shooting Apcupsd

Testing

The first step in trouble shooting apcupsd is to read the Testing Apcupsd section of this manual.

Network Problems with Mater/Slave Configurations

When working with a master/slave configuration (one UPS powering more than one computer), the master
and slave communicate via the network. In many configurations, apcupsd is started before the network is
initialized. In this case, it is possible that the master will be unable to contact the slave. On apcupsd versions
prior to 3.8.0, this could cause apcupsd to error off. The solution to this problem is to either force apcupsd to
be started after the network and the DNS (fiddle the symbolic links in /etc/rc.d), or put the names of the slave
machines in your /etc/hosts file, or even more preferable, use IP addresses rather than machine names. On
some configurations, you may need to use fully qualified names (host.domain.xxx) rather than simple host
names.

Error Messages from a Master Configuration

In a master/slave configuration, you can get the following error messages from a master. The error message is
followed by a possible explanation:

Cannot resolve slave name XXX

To contact the slave, the slave name given in the configuration file must be resolved to an IP address. In this
case, apcupsd could not get the IP address. Either the slave name is incorrect, your DNS may not be working,
or you have started apcupsd during the boot process before the network is operational.

Got slave shutdown from SSS

This message should not be printed as it is not yet used.

Cannot write to slave SSS

This message occurs when the master attempts to send a message to the slave SSS and gets an error. It
indicates that either the slave machine is not responding (apcupsd died, the system crashed, ...) or that the
network is down.

Cannot read magic from slave SSS

This message indicates that the master attempted to read the code key from the slave SSS and it did not match
the value expected. A common cause of this problem is that the master and slave versions of apcupsd are not
the same. Please be sure you are running the same version of apcupsd on all your master and slave machines.

Connect to slave SSS failed

This message is logged when the master attempts to connect to slave SSS and no connection is accepted. The
most common cause of this problem is that the slave copy of apcuspd is not yet ready to accept connections
or is not running. Generally, apcupsd will retry the connection a bit later. If the problem is persistent, it can

APC UPS management under Linux

Trouble Shooting Apcupsd 66

indicate a network problem or the slave name on the SLAVE directive of the master's configuration file is
incorrect.

Cannot open stream socket

This indicates a fundamental networking problem on your system −− either a lack of sufficient resources or
you have not configured TCP/IP operations.

Error Messages from a Slave Configuration

In a master/slave configuration, you can get the following error messages from a slave. The error message is
followed by a possible explanation:

Can't resolve master name MMM

This message is logged when the slave attempts to resolve the name given on the MASTER configuration
directive to an IP address. It probably means that the master name MMM is not defined, your DNS is not
properly working, or you have started apcupsd in the boot process before the network is initialized. Check the
name MMM, or use an explicit IP address on the MASTER configuration directive in the slave's configuration
file.

Cannot bind local address, probably already in use

This means that the slave has attempted to bind the port number so that it can listen for messages from the
master. This can occur if already have a copy of apcupsd running, or you have previously run apcupsd in the
past 5 or 10 minutes, because occasionally the operating system will not shutdown a port correctly for 5 to 10
minutes after a program exits. In this case, you can either wait a few minutes for the problem to go away, or
use a different port in both your master and slave configuration files.

Socket accept error

The slave got an error waiting on the accept() system call. This is probably due to a fundamental networking
problem.

Unauthorized attempt from master MMM

The master named MMM (probably an IP address) contacted the slave but MMM is not the master that was
listed on the MASTER configuration directive in /etc/apcupsd.conf, and consequently, it is not authorized to
communicate with the slave. Please check that your MASTER and SLAVE names in your slave and master
configuration files respectively are correct.

Read failure from socket

The slave got an error reading the socket open to the master. This indicates a fundamental networking
problem.

Bad APC magic from master: MMM

The slave received a code key from the master that does not correspond to the one expected by the slave. The
most common cause of this problem is that you are running a different version of apcupsd on the master and

APC UPS management under Linux

Error Messages from a Slave Configuration 67

the slave. Please ensure that you are running the same version of apcupsd on all your master and slaves.

Bad user magic from master: MMM

This message indicates that the master and slave have previously communicated, but that the code key
transmitted with the most recent message from the master does not correspond to what the slave expects. This
problem is probably due to a network error or some other user or machine contacting the slave on the network
port.

Master/Slave Connection Not Working

Master/slave problems are usually related to one of the following items:

Improper apcupsd.conf files. A good starting point are the master/slave example files in the examples
subdirectory of the source.

1.

Master or slave IP address or name incorrect. Try ping'ing each machine from the other using the
names or addresses that you have put in the respective apcupsd.conf files.

2.

Make sure no other program is using socket number 6666 or change the NETPORT directive in both
apcupsd.conf files.

3.

Make sure you are using the same version of apcupsd on both the master and slave machines.4.

CGI Programs Do Not Work

Try checking the following:

Did you successfully compile and link the cgi programs without errors? If not sure, cd to the cgi
directory, do a "make clean" followed by a "make"

1.

Did you move or copy all the .cgi programs in the cgi directory to your Web server cgi−bin directory
on the SAME machine?

2.

Did you verify that the cgi programs located in the cgi−bin all have execute permission?3.
Have you tried any other cgi programs and proven that they work?4.
Have you verified that the Network Information Server process of apcupsd is running as described in
this manual?

5.

Have you verified that your apcupsd.conf file is properly configured for the Network Information
Server and that the port is defined as 3551? I.e. "NETSERVER on" and "NISPORT 3551" Please note
that in releases prior to 3.10.6, the default NISPORT was 7000. It is far preferable to use port 3551
since it was specifically assigned to apcupsd by IANA.

6.

If one or more machines does not show up in the multimon output, it is most likely due to a
configuration error in the hosts.conf file in your /etc/apcupsd directory.

7.

apcaccess Does Not Work

Please check that the Network Information Server is running. apcaccess uses TCP/IP to the NIS server to get
the necessary information if pthreads is turned on.

Battery Problems

Please see the Battery Chapter of this document for more details.

APC UPS management under Linux

Master/Slave Connection Not Working 68

Cable or Connection Problems

Frequently during the initial installation, users don't know what cable they have or have problems connecting
to the serial port. If this is your case, one means of diagnosing the problem can be to use the apctest program.
To do so, you must first build it with:

make apctest

Then, you simply execute it with:

./apctest

and follow the instructions. It will place the output from the session in the file apctest.output. If you are not
able to resolve your problem, sometimes we can help if you email us this output file along with your
apcupsd.conf file. Please see the Testing Chapter of this document for additional details on how to build and
use apctest.

Bizarre Intermittent Behavior

In one case, a user reported that he received random incorrect values from the UPS in the status output. It
turned out that gpm, the mouse control program for command windows, was using the serial port without
using the standard Unix locking mechanism. As a consequence, both apcupsd and gpm were reading the
serial port. Please ensure that if you are running gpm that it is not configured with a serial port mouse on the
same serial port.

APC UPS management under Linux

Cable or Connection Problems 69

Shutdown Sequence
If you experienced so problems with the testing procedures, or if you are porting apcupsd to another system,
or you are simply curious, you may want to know exactly what is going on during the shutdown process.

The shutdown sequence is as follows:

Apcupsd detects that there is a power problem and it calls /etc/apcupsd/apccontrol powerout, which
normally sends a message to all users informing them of a potential problem.

•

After approximately 5 seconds in the power problem mode, Apcupsd calls /etc/apcupsd/apccontrol
onbattery, which normally sends a message to all users informing them that the UPS is on batteries.

•

When one of the conditions listed below occurs, apcupsd issues a shutdown command by calling
/etc/apcupsd/apccontrol doshutdown, which should perform a shutdown of your system using the
system shutdown command. You can modify the behavior by editing the /etc/apcupsd/apccontrol
script, but doing so will make it more complicated to upgrade to the next apcupsd version.

•

The conditions that trigger the shutdown can be: running time on batteries have expired (TIMEOUT),
the battery runtime remaining is below the configured value (BATTERYLEVEL), the estimated
remaining runtime is below the configured value (MINUTES), or the UPS signals that the batteries
are exhausted.

A shutdown could also be initiated if apcupsd detects that the batteries are no longer functioning
correctly. This case, though very unusual, can happen at any time even if there is proper mains
voltage, and /etc/apcupsd/apccontrol emergency is called.

Just before initiating any shutdown through the apccontrol script, apcupsd will create the file
/etc/apcupsd/powerfail. This file will be used later in the shutdown sequence to recall apcupsd after
syncing of the disks to initiate a power off of the UPS.

If the /etc/nologin file has not already been created, it will normally be created during the shutdown
sequence to prevent additional users from logging in (see the NOLOGIN configuration directive).

Even though apcupsd has requested the system to perform a shutdown, it continues running. If it is a
master with slaves, it will inform the slaves to do a shutdown. They perform their shutdown by calling
/etc/apcupsd/apccontrol remotedown.

When the system signals apcupsd to do exit, it does so. This is part of the normal system shutdown
(at least on Unix and Linux systems) and the exact time that apcupsd receives the termination signal
depends on how the shutdown links (usually in /etc/rc.d) are set.

•

Note that on Windows NT systems, apcupsd apparently continues to run as a Service even though the
machine is "shutdown".

During the shutdown of the system after apcupsd has been forced to exit, one of the last things done
by the system shutdown is to call the halt script, which is usually in /etc/rc.d/halt or
/etc/rc.d/init.d/halt, or possibly in /sbin/init.d/rc.0 depending on your system. If apcupsd was properly
installed, this standard halt script was modified to include a bit of new logic just before the final halt
of the system. It first tests if the file /etc/apcupsd/powerfail exists, and if it does, it executes

•

APC UPS management under Linux

Shutdown Sequence 70

/etc/apcupsd/apccontrol killpower. It is this last step that will cause apcupsd to be re−executed with
the −−killpower option on the command line. This option tells apcupsd to inform the UPS to kill the
power.

This final step is important if you want to ensure that your system will automatically reboot when the
power comes back on. The actual code used on the RedHat version is:

See if this is a powerfail situation. # ***apcupsd***
if [−f /etc/apcupsd/powerfail]; then # ***apcupsd***
 echo # ***apcupsd***
 echo "APCUPSD will now power off the UPS" # ***apcupsd***
 echo # ***apcupsd***
 /etc/apcupsd/apccontrol killpower # ***apcupsd***
 echo # ***apcupsd***
 echo "Please ensure that the UPS has powered off before rebooting" # ***apcupsd***
 echo "Otherwise, the UPS may cut the power during the reboot!!!" # ***apcupsd***
 echo # ***apcupsd***
fi # ***apcupsd***

The above code must be inserted as late as possible in the halt script. On many systems, such as RedHat, all
the disk drives were unmounted, then remounted read−only, thus permitting access to the /etc files and the
apcupsd executable. If your system does not explicitly remount the disks, you must remount them in
read−only mode in the code that you add. Examples of code fragments that do this can be found in the
distributions/suse subdirectory of the source.

If you are not able to insert the above code in your halt script because there is no halt script, or because your
halt script calls the init program as some Unix systems do, you can either just forget about powering off the
UPS, which means that your machine will not automatically reboot after a power failure, or there is yet
another alternative, though not at all as satisfying as inserting code in the halt script.

Only if you cannot insert the appropriate code in the halt script, when you start apcupsd, normally from the
/etc/rc.d/init.d/apcupsd script, use the −−kill−on−powerfail option. This will cause apcupsd to program the
UPS to shutoff the power just before it (apcupsd) does the system shutdown. Please note that this is not the
most ideal solution. Read on to understand why.

A very important consideration is that you must set the EEPROM in your UPS so that it waits a sufficient
time for the system to halt before it shuts off the UPS power. The current value as well as the permitted values
for your UPS can be determined by executing:

apcaccess eeprom

The output should look something like the following:

apcaccess eeprom

Valid EPROM values for the SMART−UPS 1000

 Config Current Permitted
Description Directive Value Values
===
Upper transfer voltage HITRANSFER 253 253 264 271 280
Lower transfer voltage LOTRANSFER 196 196 188 208 204
Return threshold RETURNCHARGE 0 00 15 50 90

APC UPS management under Linux

Shutdown Sequence 71

Output voltage on batts OUTPUTVOLTS 230 230 240 220 225
Sensitivity SENSITIVITY H H M L L
Low battery warning LOWBATT 2 02 05 07 10
Shutdown grace delay SLEEP 20 020 180 300 600
Alarm delay BEEPSTATE 0 0 T L N
Wakeup delay WAKEUP 0 000 060 180 300
Self test interval SELFTEST 336 336 168 ON OFF

The line of interest for you is the Shutdown grace delay, which can be changed using the SLEEP directive in
your apcupsd.conf file. The default value is 20 seconds, but generally, you can set it to 180, 300, or 600
seconds depending on your UPS. See the EEPROM programming section of this manual for further details on
how to change this EPROM value. −−kill−on−powerfail option, you run the risk of having the computer
power cut before the system has shutdown. Even if the grace period is rather long, if something goes wrong in
the shutdown, well, it is up to you to decide.

Automatic Reboot of your Computer after a Power Shutdown

If apcupsd has successfully shutdown your computer and powered off the UPS during a power outage, you
can control whether or not your computer is automatically rebooted when the power returns.

The UPS contains two internal EPROM values that determine when it will restore power to your computer
after a full power shutdown. They are the RETURNCHARGE percentage and the WAKEUP delay. Briefly,
the RETURNCHARGE specifies what percentage charge the battery must have before the power is restored.
Higher values are recommended in regions where the power goes up and down frequently. The WAKEUP
delay is a simple time delay. Most sites will have both of these at zero, or perhaps the RETURNCHARGE
set to 15. Please follow the links to the Configuration section of this manual for more information. See the
EEPROM programming section of this manual for further details on how to change these EPROM values.

The final consideration for a automatic reboot after a full power down is to ensure that your computer will
automatically reboot when the power is restored. This is not the normal behavior of most computers as
shipped from the factory. Normally after the power is cut and restored, you must explicitly press a button for
the power to actually be turned on. You can test your computer by powering it down; shutting off the power
(pull the plug); then plugging the cord back in. If your computer immediately starts up, good. There is nothing
more to do. If your computer does not start up, manually turn on the power (by pressing the power on button)
and enter your computer's SETUP program (often by pressing DEL during the power up sequence; sometimes
by pressing F10). You must then find and change the appropriate configuration parameter to permit instant
power on. Normally, this is located under the BOOT menu item, and will be called something such as
Restore on AC/Power Loss or Full−On. The exact words will vary according to the ROM BIOS provider.
Generally you will have three options: Last State, Power On, and Power Off. Although Last State should
normally work, I set my computers to Power On. This means that whenever the power is applied they are on.
The only way to shut them off is to pull the plug or to have a special program that powers them off
(/sbin/poweroff on Linux systems).

If after making all the changes suggested above, you cannot get your computer to automatically reboot, you
might examine your halt script (/etc/rc.d/init.d/halt in the case of RedHat Linux) and see if the final line that
performs the halt or reboot contains the −p option for powering down the computer. It should not with the
logic used by apcupsd, but if it does, the −p option could cause your computer to power off while the UPS is
still suppling power (i.e. before the UPS kills the power). Depending on the setting of your BIOS, it may
prevent your computer from restarting when the power returns. As already mentioned, this *should* not
apply, but in case of problems it is worth a try.

APC UPS management under Linux

Automatic Reboot of your Computer after a Power Shutdown 72

Shutdown Problems

Obviously if your halt script is not properly modified, apcupsd will not be able to shut off the power to the
UPS, and if the power returns before the batteries are exhausted your system will not automatically reboot. In
any case, your machine should have been cleanly shutdown.

Master/Slave Shutdown

In master/slave configurations, however, the master cannot be 100 percent sure that the slaves have all
shutdown before it performs the power off. As a consequence, it is possible that the master will shut off the
power before the slave has finished shutdown. If this is the case, the best procedure is to put an appropriate
sleep command in the /etc/apcupsd/apccontrol file on the master. For example to give the slaves 30
additional seconds to shutdown, one would add:

sleep 30

just after the line that reads

doshutdown)

in the apccontrol file (approximately line 79 − depending on your system version).

Also, on a slave machine, you do not want to use the modified halt script since it will recall apcupsd, which
will detect that it is a slave (i.e. no connection to the UPS) and will complain that it cannot do the killpower.
This situation is not harmful just annoying and possibly confusing.

One possible problem during shutdown can be caused by remnants of old versions. Please be sure to delete or
rename all prior versions (/usr/local/sbin/apcupsd or /sbin/powersc).

Startup

Normally, apcupsd is automatically started when your system is rebooted. This normally occurs because the
startup script apcupsd is linked into the appropriate places in /etc/rc.d. On most Linux systems, there is a
program called chkconfig that will automatically link the startup script. This program is invoked by the make
install scripts, or it is explicitly done for those systems that do not have chkconfig. If this is not the case, you
can either link it in appropriately yourself or explicitly call it from your rc.local file. The appropriate manual
way to startup apcupsd is by executing:

<path>/apcupsd start

where <path> is normally /etc/rc.d or /etc/rc.d/init.d depending on your system (isn't Unix wonderful? :−)).
Using this script is important so that any files remaining around after a power failure are removed. Likewise,
shutting down apcupsd should be done with the same script:

<path>/apcupsd stop

APC UPS management under Linux

Shutdown Problems 73

Windows Considerations

Please see the end of Apcupsd Under Windows chapter of this manual for conderations pertaining to
shutdown and killpower on Windows.

APC UPS management under Linux

Windows Considerations 74

apcaccess
Apcaccess is a program (normally found in /sbin/apcaccess) that permits you to print out the complete status
of your UPS. Although there are a number of command line arguments (eprom, reconfig, status, slave,
shutdown), all except eprom and status are under development and hence do not work.

If you have built apcupsd with pthreads enabled, apcaccess will use the Network Information Server to
obtain the necessary information for the status and eeprom commands. This is because in the pthreaded
version, there is no IPC shared memory. In this case (pthreads enabled), you can specify a second optional
argument to apcaccess in the form of host:port, where the :port is optional. The default is localhost:3551.
Please note that in versions prior to 3.10.6, the default NIS port was 7000, so if you are mixing versions, you
will need to take a lot of care to ensure that all components are using the same port.

apcaccess status

The status command line option of apcaccess will produce a full printout of all the STATUS variables used
by apcupsd. This can be very helpful for checking the condition of your UPS and to know whether or not
apcupsd is properly connected to it. For a complete description of the variables and their meanings, please
read the Apcupsd STATUS document.

Please note that if you invoke apcaccess within the first 30 seconds of launching apcupsd, you will likely get
an error message such as:

APCACCESS FATAL ERROR in apcipc.c at line 325
attach_shmarea: shared memory version mismatch

This is because apcupsd is still in the process of initializing the shared memory segment used to communicate
between the two processes. There is also a small window of time after which the memory segment is properly
initialized but before the UPS has been completely polled. If you invoke apcaccess during this period, you
will get the STATUS output, but with many of the values zero. The solution is to wait at least 30 seconds after
starting apcupsd before launching apcaccess.

To invoke apcaccess, enter:

apcaccess status

and for a SmartUPS 1000 apcaccess prints the following output:

DATE : Fri Dec 03 12:34:26 CET 1999
HOSTNAME : matou
RELEASE : 3.7.0−beta−1
CABLE : Custom Cable Smart
MODEL : SMART−UPS 1000
UPSMODE : Stand Alone
UPSNAME : UPS_IDEN
LINEV : 232.7 Volts
MAXLINEV : 236.6 Volts
MINLINEV : 231.4 Volts
LINEFREQ : 50.0 Hz
OUTPUTV : 232.7 Volts

APC UPS management under Linux

apcaccess 75

LOADPCT : 11.4 Percent Load Capacity
BATTV : 27.7 Volts
BCHARGE : 100.0 Percent
MBATTCHG : 5 Percent
TIMELEFT : 112.0 Minutes
MINTIMEL : 3 Minutes
SENSE : Low
DWAKE : 060 Seconds
DSHUTD : 180 Seconds
LOTRANS : 204.0 Volts
HITRANS : 253.0 Volts
RETPCT : 050.0 Percent
STATFLAG : 0x08 Status Flag
STATUS : ONLINE
ITEMP : 29.2 C Internal
ALARMDEL : Low Battery
LASTXFER : U command or Self Test
SELFTEST : NO
STESTI : 336
DLOWBATT : 02 Minutes
DIPSW : 0x00 Dip Switch
REG1 : 0x00 Register 1
REG2 : 0x00 Register 2
REG3 : 0x00 Register 3
MANDATE : 01/05/99
SERIALNO : GS9902009459
BATTDATE : 01/05/99
NOMOUTV : 230.0
NOMBATTV : 24.0
HUMIDITY : N/A
AMBTEMP : N/A
EXTBATTS : 0
BADBATTS : N/A
FIRMWARE : 60.11.I
APCMODEL : IWI
END APC : Fri Dec 03 12:34:33 CET 1999

apcaccess eprom

The eprom command line option for apcaccess allows you to examine the current values of your UPS'
EPROM as well as to know the permitted values that can be set in the EPROM. For information about
changing these values, see the section on Apcupsd EEPROM Configuration.

A typical output from apcaccess eprom is:

Valid EPROM values for the SMART−UPS 1000

 Config Current Permitted
Description Directive Value Values
===
Upper transfer voltage HITRANSFER 253 253 264 271 280
Lower transfer voltage LOTRANSFER 208 196 188 208 204
Return threshold RETURNCHARGE 15 00 15 50 90
Output voltage on batts OUTPUTVOLTS 230 230 240 220 225
Sensitivity SENSITIVITY H H M L L
Low battery warning LOWBATT 2 02 05 07 10
Shutdown grace delay SLEEP 180 020 180 300 600
Alarm delay BEEPSTATE T 0 T L N

APC UPS management under Linux

apcaccess eprom 76

Wakeup delay WAKEUP 60 000 060 180 300
Self test interval SELFTEST 336 336 168 ON OFF

APC UPS management under Linux

apcaccess eprom 77

apctest
apctest is a program that allows you to directly talk to your UPS and run certain tests. It will function either
for Simple Signaling UPSes (dumb UPSes) or for Smart UPSes.

Running apctest for a Simple Signaling UPS

Shutdown apcupsd if it is running.
Make sure your /etc/apcupsd/apcupsd.conf file has UPSTYPE backups and UPSCABLE simple
Normally apctest will have been built and installed by default, otherwise, you can explicitly build it on Unix
with:

cd <apcupsd−source−directory>
make apctest
./apctest

on Win32 systems, use:
make apctestwin32
./apctest

It will present you with the following output

2001−02−07 04:08:26 apctest 3.8.5 (3 January 2002) redhat
Checking configuration ...
sharenet.type = DISABLE
cable.type = CUSTOM_SIMPLE
mode.type = BK
Setting up serial port ...
Creating serial port lock file ...
Doing prep_serial() ...
Hello, this is the apcupsd Cable Test program.
This part of apctest is for testing dumb UPSes (ones that uses signaling rather than commands.
Most tests enter a loop polling every second for 10 seconds.

Then it will present you with the following list of choices:

1) Test 1 − normal mode
2) Test 2 − no cable
3) Test 3 − no power
4) Test 4 − low battery (requires test 3 first)
5) Test 5 − battery exhausted
6) Test 6 − kill UPS power
7) Test 7 − run tests 1 through 5
8) Guess which is the appropriate cable
9) quit

Select test number:

Run tests 1, 2, and 3. Note, none of the currently supported cables will indicate a change for test 2. You can
then run test 8 to see what cable it thinks you should be using. Finally run test 4.

apctest can also be run for Smart UPSes.

APC UPS management under Linux

apctest 78

The print out of your testing will be written to the file apctest.output. If you are unable to solve your
problem, you can try posting that file to the development mailing list, and perhaps we can help you. In this
case, please also include information on your operating system, which version of apcupsd you are using, your
UPS model, and also your apcupsd.conf file.

Expected apctest Signals for a Dumb UPS

If you have configured your UPS as:

UPSTYPE backups
UPSCABLE APC_940_0119A
 or APC_940_0127A
 or APC_940_0128A
 or APC_940_0020B
 or APC_940_0020C

here are typical signals you would expect to see in the output from the various tests of apctest:

Test 1 normal: RTS for cables (0119A 0127A 0128A)
Test 2 no serial cable: not important
Test 3 no AC power: CTS for all cables
Test 4 batteries exhausted: CTS and CD for all cables

Note: RTS if set in Test 1 will probably also be set in all the other tests. This is not important, what counts is
the appearance of CTS when the power fails and additionally CD when the batteries are low.

Expected apctest Signals for a BackUPS Pro

If you have configured your UPS as:

UPSTYPE backupspro
UPSCABLE APC_940_0095A
 or APC_940_0095C

here are the typical signals you would expect to see in the output from the various tests of apctest:

Test 1 normal: RTS not set
Test 2 no serial cable: not important
Test 3 no AC power: RNG
Test 4 batteries exhausted: RNG and CD

Note: RTS should never be set in any of the tests as it is the killpower signal. What is important is the
appearance of RNG when the power fails and additionally CD when the batteries are low.

Running apctest for a Smart UPS

Shutdown apcupsd if it is running.
Make sure your /etc/apcupsd/apcupsd.conf file has UPSTYPE smart and UPSCABLE has one of the smart
cables that are supported.

Normally apctest will have been built but not installed, so you must execute it from the <bacula−source>/src
directory. You can explicitly build it on Unix with:

APC UPS management under Linux

Expected apctest Signals for a Dumb UPS 79

cd <apcupsd−source−directory>
make apctest
./apctest

on Win32 systems, use:
make apctestwin32
./apctest

It will present you with the following output

2003−07−07 11:19:21 apctest 3.10.6 (07 July 2003) redhat
Checking configuration ...
Attached to driver: apcsmart
sharenet.type = DISABLE
cable.type = CUSTOM_SMART

You are using a SMART cable type, so I'm entering SMART test mode
mode.type = SMART
Setting up serial port ...
Creating serial port lock file ...
Hello, this is the apcupsd Cable Test program.
This part of apctest is for testing Smart UPSes.
Please select the function you want to perform.

1) Query the UPS for all known values
2) Perform a Battery Runtime Calibration
3) Abort Battery Calibration
4) Monitor Battery Calibration progress
5) Program EEPROM
6) Enter TTY mode communicating with UPS
7) Quit

Select function number: 1

Item 1 will probe the UPS for all values known to apcupsd and present them in rather raw format. This output
can be useful for providing technical support if you are having problems with your UPS.

Item 2 will perform a Battery Runtime Calibration. This test will only be performed if your battery is 100%
charged. Running the test will cause the batteries to be discharged to approximately 30% of capacity. The
exact number depends on the UPS model. In any case, apctest will abort the test if it detects that the battery
charge is 20% or less.

The advantage of doing this test is that the UPS will be able to recalibrate the remaining runtime counter that
it maintains in its firmware. As your batteries age, they tend to hold less of a charge, so the runtime calibration
may not be accurate after several years.

We recommend that perform a Battery Calibration about once a year. You should not perform this calibration
too often since discharging the batteries tends to shorten their lifespan.

Item 3 can be used to abort a Battery Calibration in progress, if you some how became disconnected.

Item 4 can be used to restart the monitoring of a Battery Calibration if you should some how become
disconnected during the test.

APC UPS management under Linux

Expected apctest Signals for a Dumb UPS 80

Item 5 is used to program the EEPROM. Please see the EEPROM programming chapter of this manual for the
details.

Item 6 will initiate a direct communication between your terminal and the UPS at which point, you can enter
raw UPS commands. Please be aware that you should be careful what commands you enter because you can
cause your UPS to suddenly shutdown, or you can modify the EEPROM in a way to disable your UPS. The
details of the raw Smart mode UPS commands can be found in the UPS Programming Bible chapter of this
manual.

Item 7 will terminate apctest.

APC UPS management under Linux

Expected apctest Signals for a Dumb UPS 81

The Apcupsd Network Information Server
Apcupsd maintains STATUS and EVENTS data concerning the UPS and its operation. This information can
be obtained over the network using either apcnetd or apcupsd's internal network information server, which is
essentially the same code as apcnisd but compiled into apcupsd. Clients on the network make a connection to
the information server and send requests for STATUS, or EVENTS data, which the server then transmits to
them.

The information served to the network by this interface should not be confused with master/slave mode that
shares a UPS between two or more computers. That code is described in the configuration section of this
documentation.

There are three different ways to run the information server depending on your requirements and preferences.
It can be run as 1. a standalone program, 2. a standalone program invoked by the inetd daemon, or 3. as a
thread (or child process) of apcupsd (default configuration). We recommend option 3 unless you have
specific reasons to do otherwise.

Running the Network Information Server Directly within
Apcupsd

This is probably the simplest way to run the network information server. To do so, you simply modify the
NETSERVER directive in /etc/apcupsd/apcupsd.conf to be on, and then stop and restart apcupsd. It will
automatically create the server thread (or spawn an additional child process named apcnis) to handle network
clients. In the case where pthreads are enabled, a new thread will be created rather than a child process to
handle the network information requests. Note, the above modification should not be necessary if you use the
default apcupsd.conf, since it is already turned on.

Although this method is simple, it affords no protection from the outside world accessing your network server
unless, like me, you are behind a firewall. In addition, if there is a bug in the network server code, or if a
malicious user sends bad data, it may be possible for apcnis to die, in which case, though it is not supposed to,
apcupsd may also exit, thus leaving your machine without shutdown protection. In addition, since apcupsd is
running at root level, all threads or any child process will do so also. That being said, most of us prefer to run
the server this way.

With apcupsd version 3.8.2 and later, you may enable the TCP Libwrap subroutines to add additional
security. In this case, access to the network server will be controlled by the statements you put in
/etc/hosts.allow.

Running apcnisd from INETD

This is probably the most secure and most desirable way of running the network information server.
Unfortunately, it is a bit more complicated to setup. However, once running, the server remains unexecuted
until a connection is attempted, at which point, inetd will invoke apcnisd. Once apcnisd has responded to the
client's requests, it will exit. None of the disadvantages of running it standalone apply since apcnisd runs only
when a client is requesting data. Note, running in this manner works only if you are using the old forking code
and have pthreads explicitly turned off. The pthreads version of apcupsd does not support the shared memory
calls that are necessary for apcnisd to access the internal state of apcupsd.

APC UPS management under Linux

The Apcupsd Network Information Server 82

An additional advantage of this method of running the network information server is that you can call it with a
TCP wrapper and thus use access control lists (ACL) such as hosts.allow. See the man pages for hosts.allow
for more details.

To configure apcnisd to run from INETD, you must first put an entry in /etc/services as follows:

apcnisd 3551/tcp

This defines the port number (3551) and the service (TCP) that apcnisd will be using. This statement can go
anywhere in the services file. Normally, one adds local changes such as these to the end of the file.

Next, you must modify /etc/inetd.conf to have the following line:

apcnisd stream tcp nowait root /usr/sbin/tcpd /sbin/apcnisd −i

If you do not want to run the TCP wrapper, then the line should be entered as follows (not tested):

apcnisd stream tcp nowait root /sbin/apcnisd −i

Please check that the file locations are correct for your system. Also, note that the −i option is necessary so
that apcnisd knows that it was called by INETD. Before restarting INETD, first ensure that the
NETSERVER directive in /etc/apcupsd/apcupsd.conf is set to off. This is necessary to prevent apcupsd
from starting a child process that acts as a server. If you change NETSERVER, you must stop and restart
apcupsd for the configuration change to be effective.

Finally, you must restart INETD for it to listen on port 3551. On a RedHat system, you can do so by:

/etc/rc.d/init.d/inet reload

At this point, when a client attempts to make a connection on port 3551, INETD will automatically invoke
apcnisd.

Running apcnisd Standalone

This is probably the least desirable of the three ways to run an apcupsd network information server because if
apcupsd is stopped, you must also stop apcnisd before you can restart apcupsd. This is because apcnisd,
when run standalone, holds the shared memory buffer by which apcnisd and apcupsd communicate. This
prevents a new execution of apcupsd from creating it.

To execute apcnisd in standalone mode, first ensure that the NETSERVER directive in
/etc/apcupsd/apcupsd.conf is set to off. This is necessary to prevent apcupsd from starting a child process
that acts as a server. Restart apcupsd normally, then:

/sbin/apcnisd

The advantage of running the network information server standalone is that if for some reason, a client causes
the network server to crash, it will not affect the operation of apcupsd.

APC UPS management under Linux

Running apcnisd Standalone 83

APC UPS management under Linux

84

Apcupsd Bugs

Apcupsd Version 3.9.8 Bugs
Since the software has major modifications, there are probably quite a few bugs, many of which are simply
unfinished implementations. For example, the EEPROM programming feature is disabled in this version
while we are deciding how to do it the right way.

The 3.8.5 Slackware bug reported below for version 3.8.5 does not apply to version 3.9.8.

The killpower Feature Does Not Work On USB UPSes

We have not yet been able to make a USB UPS shut off the power. This applies both to the BackUPS CS
models as well as the SmartUPS models. Though this means the implementation is incomplete, it should not
be a major issue if after performing a system halt, your computer does not power off (this is the normal
behavior). In that case, the computer will continue to drain the UPS batteries and generally within 2 minutes
the UPS will shutoff. If this happens, you computer will automatically reboot when the mains power returns.
Unfortunately, leaves a 2 minute (or longer) window where the mains power can return and your computer
will be left in a halted state.

Battery Voltages Are Not Correct

On all USB UPSes, the battery voltage is incorrectly scaled in STATUS output. In addition, on Back−UPS
CSes, the BATTV value is not reported in STATUS output. Though annoying, this causes no harm as the
battery voltages are used for display only.

Apcupsd Version 3.8.5 Bugs
All previous bugs reported against apcupsd have been fixed in this version.

Slackware −− After a Power Failure, It Reboots

This bug concerns the Slackware platform only. When power is lost and then restored, apcupsd will cause the
system to reboot. This is due to an omission (error) in the file distributions/slackware/apccontrol.sh.in. The
patch is as follows:

−−− apccontrol.sh.in.orig Wed Mar 13 17:51:05 2002
+++ apccontrol.sh.in Wed Mar 13 17:53:40 2002
@@ −82,9 +82,11 @@
 ;;
 mainsback)
 printf "Power has returned..." | wall
− printf "Attempting to cancel shutdown." | wall
− ${SHUTDOWN} −c

APC UPS management under Linux

Apcupsd Version 3.8.5 Bugs 85

− ${SHUTDOWN} −r now "apcupsd initiated reboot"
+ if [−f @PWRFAILDIR@/powerfail] ; then
+ printf "Attempting to cancel shutdown." | wall
+ ${SHUTDOWN} −c
+ ${SHUTDOWN} −r now "apcupsd initiated reboot"
+ fi
 ;;
 annoyme)
 printf "Power problems please logoff." | wall

After applying this patch, you must either do:

make Makefiles
make install

or simply rerun the whole build process starting from ./configure

Apcupsd Version 3.8.4 Bugs
Version 3.8.4 is a bug fix version to 3.8.3 that corrects improper placement of the subsystem lock file that
crept in between 3.8.2 and 3.8.3. It also corrects an oversight in the multimoncss.c code that didn't include the
temperature and humidity columns in the Normal class.

Apcupsd Version 3.8.3 Bugs
All known bugs in version 3.8.2 have been fixed with the exception of the following two:

Networking may not work in a mixed vendor setup

Bug: In a mixed vendor setup (RedHat, Debian, ...), the default networking (master/slave or Network
Information Server) port assignments are different. Reason: Due to port conflicts on some machines, we set
the default port numbers on each distribution to the values recommended by our experts. This solves a lot of
problems, but results in incompatibilities if you use the apcupsd defaults. Fix: If you run a mixed vendor
setup, either add a port specification :<port> to the machine name in hosts.conf or use the
−−with−nis−port=nn and −−with−net−port=nn options on your ./configure command and ensure that all
your machines use the same port numbers. After the ./configure, you will need to redo your make and make
install. The default values for most systems are:

./configure −−with−nis−port=3551 −−with−net−port=6666

Unusual Case of Apcupsd Hanging during Boot

On some systems (kernel version 2.4.5−acxx), apcupsd may hang during the boot process. This appears to be
a probably of invoking apcupsd before the network is initialized. The simplest solution is to ensure that
apcupsd is started after the network functions, or to put an explicit background (ampersand) request in the
apcupsd startup script.

If this occurs and your apcupsd is a master, the problem can be because you master/slave networking port is
used by another program on the slave machine. The master/slave networking code has been modified to
timeout in 10 seconds in this case.

APC UPS management under Linux

Apcupsd Version 3.8.3 Bugs 86

Apcupsd Version 3.8.2 Bugs
All version 3.8.0 and 3.8.1 bugs have been corrected in version 3.8.2.

The Lock Directory in the Solaris is Incorrect

Bug: The apcupsd script is using /var/lock as the directory for lock files even though the configure script
figures out that it is supposed to be /var/spool/locks (/var/lock does not exist).

Fix: Apply the following patch then re−run your ./configure:

−−− distributions/sun/old.apcupsd.in Sat Jul 7 10:20:30 2001
+++ distributions/sun/apcupsd.in Sat Jul 7 10:18:59 2001
@@ −17,7 +17,7 @@
 rm −f @PWRFAILDIR@/powerfail
 echo "Starting apcupsd power management ...\c"
 @sbindir@/apcupsd || return=" Failed."
− touch /var/lock/apcupsd
+ touch @LOCKDIR@/apcupsd
 echo "$return"
 ;;
 stop)
@@ −29,7 +29,7 @@
 else
 return=" Failed."
 fi
− rm −f /var/lock/apcupsd
+ rm −f @LOCKDIR@/apcupsd
 echo "$return"
 ;;
 restart)

Solaris doesn't Shutdown

Bug: Solaris detects power failures and seems to work fine, but the machine is not shutdown.

Reason: You probably executed the ./configure for apcupsd with /usr/ucb on your path before /usr/sbin.
Thus apcupsd is using the Berkeley shutdown program but with SysV arguments.

Fix: remove /usr/ucb from your path and rerun your ./configure, make, and make install. Alternative: edit
/etc/apcupsd/apccontrol and set the correct path for the SysV shutdown. We are working on a permanent
solution.

examples/safe.apccontrol has bad wall command

Bug: On non−Linux systems, the examples/safe.apccontrol doesn't work because it uses wall "message"
whereas on other systems wall only accepts the message from stdin.

Fix: We have modified examples/safe.apccontrol to use wall <<EOF input, which should work fine on all
systems. You can download the new version of safe.apccontrol from safe.apccontrol.tar.gz, but you may want
to edit the paths to correspond to your system.

APC UPS management under Linux

Apcupsd Version 3.8.2 Bugs 87

http://www.sibbald.com/apcupsd/download/safe.apccontrol.tar.gz

Future: For the next version of apcupsd, we have also created a examples/safe.apccontrol.in so that all the
paths will be correctly set by configure for your system.

Networking does not work in a mixed vendor setup

Bug: In a mix vendor setup (RedHat, Debian, ...), the default networking (master/slave or Network
Information Server) port assignments are different. Reason: Due to port conflicts on some machines, we set
the default port numbers on each distribution to the values recommended by our experts. This solves a lot of
problems, but results in incompatibilities if you use the apcupsd defaults. Fix: If you run a mixed vendor
setup, use the −−with−nis−port=nn and −−with−net−port=nn options on your ./configure command and
ensure that all your machines use the same port numbers. After the ./configure, you will need to redo your
make and make install. The default values for most systems are:

./configure −−with−nis−port=3551 −−with−net−port=6666

Unusual Case of Apcupsd Hanging during Boot

On some systems (kernel version 2.4.5−acxx), apcupsd may hang during the boot process. This appears to be
a probably of invoking apcupsd before the network is initialized. The simplest solution is to ensure that
apcupsd is started after the network functions, or to put an explicit background (ampersand) request in the
apcupsd startup script.

Apcupsd Version 3.8.1 Bugs
Unfortunately, it seems that every program has some bugs. We do our best to keep the bugs to a minimum by
extensive testing. However, because of our inherent nature to occasionally overlook things and the fact that
we don't have all the UPS models nor the APC documentation on those models, apcupsd will have some bug.

As the bugs become known to us, we will post them here with any possible fixes or workarounds that we
have.

Apcupsd may Hang when Attempting to Initialize the Serial Port

This problem has been reported on NetBSD systems and on a Solaris8 (64bit) UltraSparc60 system. The
problem is that the open() of the serial port does not return. The solution is to use the O_NDELAY flag when
opening the port. The open() at 85 of apcserial.c should be replaced with the following:

 if ((ups−>fd = open(ups−>device, O_RDWR | O_NOCTTY | O_NDELAY)) <0) {
 Error_abort2(_("Cannot open UPS tty %s: %s\n"),
 ups−>device, strerror(errno));
 }
 /* Cancel the no delay we just set */
 cmd = fcntl(ups−>fd, F_GETFL, 0);
 fcntl(ups−>fd, F_SETFL, cmd ~O_NDELAY);

Please note the addition of the two fcntl() calls to remove the O_NDELAY so that apcupsd will function
properly. The patch relative to apcupsd−3.8.1 is:

@@ −77,18 +81,21 @@

APC UPS management under Linux

Apcupsd Version 3.8.1 Bugs 88

 Error_abort0(_("Serial port already initialized.\n"));
 }

− /* Open the the device */
− if ((ups−>fd = open(ups−>device ,O_RDWR | O_NOCTTY)) <0) {
+ /* Open the serial port device */
+ if ((ups−>fd = open(ups−>device, O_RDWR | O_NOCTTY | O_NDELAY)) <0) {
 Error_abort2(_("Cannot open UPS tty %s: %s\n"),
 ups−>device, strerror(errno));
 }
+ /* Cancel the no delay we just set */
+ cmd = fcntl(ups−>fd, F_GETFL, 0);
+ fcntl(ups−>fd, F_SETFL, cmd ~O_NDELAY);

Version 3.8.1 May Cause Networking Problems on Win95

We have a report by a user that installing version 3.8.1 on a Windows 95 machine caused the loss of all
networking capabilities on that machine. Re−installation of version 3.8.0 restored the networking capabilities.
It should be noted that the major difference between the two versions was addition of support on Win32 for
simple signaling UPSes (no change for Smart UPSes or networking) and upgrading from version 1.1.2 to
version 1.1.5 of CYGWIN. We would appreciate hearing of your experiences with Win95 and apcupsd.

STATUS Output for BackUPS Pro and SmartUPS VS Incorrect

The STATUS Output for the BackUPS Pro and SmartUPS VS was unfortunately truncated due to a misplaced
"break" statement. To fix this problem and restore the full STATUS output, for version 3.8.1, delete line 161
of apcstatus.c, which should be "break;"

 } else {
 s_write("LINEFAIL : DOWN\n");
 if (ups−>BattLow == 0) {
 s_write("BATTSTAT : RUNNING\n");
 ups−>Status = UPS_ONBATT;
 } else {
 s_write("BATTSTAT : FAILING\n");
 ups−>Status = UPS_BATTLOW;
 }
 }
 s_write("STATFLAG : 0x%02X Status Flag\n", ups−>Status);
 break; <=========== delete this line
 case NBKPRO:
 case SMART:
 case SHARESMART:
 case MATRIX:
 if (ups−>UPS_Cap[CI_IDEN]) {
 s_write("UPSNAME : %s\n", ups−>name);
 } else {
 s_write("UPSNAME : N/A\n");
 }

Thanks to Joe Acosta for reporting this bug and testing the fix. The patch relative to apcupsd−3.8.1 is:

@@ −158,7 +158,7 @@
 }

APC UPS management under Linux

Version 3.8.1 May Cause Networking Problems on Win95 89

 }
 s_write("STATFLAG : 0x%02X Status Flag\n", ups−>Status);
− break;
+ /* Note! Fall through is wanted */
 case NBKPRO:
 case SMART:
 case SHARESMART:

Automatic Self Test is Reported as Power failure

Depending on your EEPROM setting, the UPS will enter an automatic self test mode for approximately 30
seconds every two weeks (the default). The self test involves a switch to battery power, and apcupsd reports
this as a power failure. We hope to correct this in a future version.

Improper Shutdown of Apcupsd on WinNT Systems

If you attempt to shutdown apcpusd on a WinNT system either through the system tray icon or via the
Services Manager, two of the three apcupsd processes may become stuck in the computer. One of this
processes may consume all available CPU time. Even as the system administrator, you will be unable to kill
these processes (that's Microsoft for you!). Normally, there should be no need to stop apcupsd. However,
should you want to do so, for example, to make an upgrade, go to the Services dialog from the Control Panel,
and deactivate apcupsd then reboot your computer.

Name Resolution Does Not Work on Win32 Systems

In a master/slave configuration, normally one uses the master and slave machine names as a qualified domain
name in apcupsd.conf. Unfortunately, on Win32 systems, apcupsd is unable to resolve these names to an IP
address needed to communicate with the other end. To resolve the problem, please use an explicit IP address
written as a dotted quadruple (e.g. 192.168.1.100) instead of the machine name.

The apccontrol Script Doesn't Work with All User Scripts

apcupsd allows customization of the actions taken during events (e.g. onbattery, mainsback, etc). One
method is to modify the /etc/apcupsd/apccontrol script directly. However, this makes it more difficult to
upgrade to a new version of apcupsd. An alternate method is to place your own script in the /etc/apcupsd
directory with the name of the event that you wish to control. For example, you may want to shutdown an
Oracle database prior to issuing the system shutdown command. If the script you create is a shell script,
everything is OK. However, if you use a Perl script the script may not run. To correct this problem, change the
following line in apccontrol:

 ${SCRIPTSHELL} ${SCRIPTDIR}/${1}

at line 38 of apccontrol (depending on your version), to:

 ${SCRIPTDIR}/${1}

For this to work, your script file must have the executable bit set.

APC UPS management under Linux

Automatic Self Test is Reported as Power failure 90

Denial of Service Security Problem

One of our users emailed us with the following information (with which, we agree):

I noticed that its (apcupsd's) handling of temp files during e−mail notification was prone to
denial−of−service attacks. I found this vulnerability within these scripts found in the
/etc/apcupsd directory in the above RPM:

 changeme
 commfailure
 commok
 mainsback
 onbattery

Since the notification scripts blindly write to a $$−selected /tmp filename, any user on the box
could cause root to overwrite any file on the system (/etc/passwd, /boot/vmlinuz) with the
UPS error message by making lots and lots of /tmp/apcupsd.onbattery.##### symlinks which
point to the victim file and waiting. (Yes, it's fairly unlikely, but a hole's a hole.)

As work−arounds, I'd recommend either moving the temp file to within /etc/apcupsd (which
is writable only by root or else the sysadmin has bigger problems than temp file creation) or
piping from a subshell like this:

 (
 echo "$MSG"
 echo " "
 /sbin/apcaccess status
) | $APCUPSD_MAIL −s "$MSG" $SYSADMIN

Apcupsd version 3.8.0 Bugs
In addition to the bugs reported above, version 3.8.0 has the following problems. Please note that all of these
bugs have been corrected in version 3.8.1.

Win32 apcupsd Does Not Work with Simple Signaling UPSes

The Win32 version of apcupsd will not support simple signaling UPSes (sometimes called dumb UPSes) such
as the Back−UPS. Please do not attempt to use it as if there is a power failure, it will most likely cause the
UPS to suddenly shut off the power to your computer. This is due to the fact that CYGWIN does not support
serial line signal level IOCTL calls. We hope to rectify this situation in the not so distant future (no promises
because of the inadequacies of the Windows API in this area, which is probably why CYGWIN does not
support the signal level IOCTLs).

Bad Path to Shutdown in apccontrol Script

A Japanese user has reported that the call to /usr/bin/shutdown in the apccontrol script must be changed to
/sbin/shutdown on his RedHat 6.2J system (/usr/bin/shutdown is valid on my English RedHat 5.2, 6.0, 6.1,
and 7.0 systems). This kind of problem underscores the necessity to test the installation, as this user wisely
did.

APC UPS management under Linux

Apcupsd version 3.8.0 Bugs 91

CGI Programs May Error When Called Directly

If instead of calling the CGI program multimon.cgi, the user calls one of the helper programs directly, that
program may detect bad arguments and error. This causes Apache to report an "Internal Error" to the user.
This is a bit unpleasant for some users but it causes no harm. All the CGI programs have been reworked to
provide less dramatic error messages, and they will be posted to this site as updates shortly.

Alpha Tru64 32/64 Bit Bug

On Alpha machines, one instance of a 32/64 bit problem escaped our notice during the port. It apparently only
affects the CGI programs, and causes apcupsd to be unable to resolve names. A fix to this problem will be
posted.

APC UPS management under Linux

CGI Programs May Error When Called Directly 92

Apcupsd Network Monitoring (CGI) Programs

Configuration

With this release, there are five CGI programs (multimon.cgi, multimoncss.cgi, upsstats.cgi, upsfstats.cgi,
and upsimage.cgi). To have them properly installed, you must run the ./configure command with
−−enable−cgi and you should specify an installation directory with −−with−cgi−bin= or load them manually.
To install the Cascading Style Sheet, which is used by multimoncss.cgi, you must use the −−with−css−dir=
option. The default directory for installation of the CGI programs is /etc/apcupsd, which is not really where
you want them if you are going to use them. Normally, they should go in the cgi−bin of your Web server.

Once built and loaded, they will give you the status of your UPS or UPSes over the network.

Normally only multimon.cgi or multimoncss.cgiis directly invoked by the user. However, it is possible to
directly invoke upsstats.cgi and upsfstats.cgi. upsimage.cgi should never be directly invoked as it is used by
upsstats.cgi to produce the bar charts.

Setting up and Testing the CGI Programs

Before using multimon and the other CGI programs, first ensure that apcupsd is configured to run the
Network Information Server. This is done by setting NETSERVER on in /etc/apcupsd/apcupsd.conf. See
the Network Information Server section of the configuration section of this manual for additional details.
Also, see the section at the end of this chapter concerning the Client test program.

Next you must edit the hosts file /etc/apcupsd/hosts.conf and at the end, add the name of the hosts you want
to monitor and a label string for them. On my site, I use multimon.conf unmodified from what is on the source
distribution. However, I have modified the hosts.conf file to contain the following three lines:

MONITOR matou "Server"
MONITOR polymatou "Backup server"
MONITOR deuter "Disk server"

matou, polymatou, and deuter are the network names of the three machines currently running apcupsd.

Please note that the network names may either be IP addresses or fully qualified domain names. The network
name (or IP address) may optionally be followed by :<port>, where the port is the NIS port address you wish
to use. This is useful if you are running multiple copies of apcupsd on the same system or if you are running
in a mixed vendor environment where the NIS port assignments differ. An example could be the following:

MONITOR matou "Server"
MONITOR polymatou "Backup server"
MONITOR deuter "Disk server"
MONITOR polymatou:7001 "APC USB UPS"

where the USB copy of apcupsd has been configured to use port 7001 (with −−with−nis−port=7001 on the
./configure or by modifying apcupsd.conf). Note, the default NIS port is 3551 on most platforms.

To test multimon.cgi, you can execute it as non−root directly from the source cgi build directory. To do so,
enter at a shell prompt:

APC UPS management under Linux

Apcupsd Network Monitoring (CGI) Programs 93

./multimon.cgi

If everything is setup correctly, it will print a bunch of HTML with the values of the machines that you have
put in the hosts.conf file. It should look something like the following (note, only a small portion of the output
is reproduced here):

Content−type: text/html

<!DOCTYPE HTML PUBLIC "−//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/REC−html40/loose.dtd">
<HTML>
<HEAD><TITLE>Multimon: UPS Status Page</TITLE></HEAD>
<BODY BGCOLOR="#FFFFFF">
<TABLE BGCOLOR="#50A0A0" ALIGN=CENTER>
<TR><TD>
<TABLE CELLPADDING=5>
<TR>
<TH COLSPAN=10 BGCOLOR="#60B0B0">
APCUPSD UPS Network Monitor

Sun Jan 16 12:07:27 CET 2000</TH>
</TR>
<TR BGCOLOR="#60B0B0">
<TH COLSPAN=1>System</TH>
<TH COLSPAN=1>Model</TH>
<TH COLSPAN=1>Status</TH>
...

If you do not get similar output, check the permissions of the /etc/apcupsd directory and of those of
/etc/apcupsd/hosts.conf to ensure that your web server can access it. At many sites such as mine, the Apache
server is not running as root, so you must be careful to ensure that that /etc/apcupsd/hosts.conf and
/etc/apcupsd/multimon.conf are world readable.

To invoke multimon in your Web browser, enter:

http://<your−site>/cgi−bin/multimon.cgi

You should get something similar to the screen shot shown below.

If you wish additional control over the colors, type faces, and sizes of the multimon output, you might wish to
use multimoncss.cgi in place of multimon. In this case, you simply edit the multimon.css file to specify the
styles you prefer. There are several sample Style Sheet files in the cgi subdirectory of the source tree.

To see a working example of the these programs, visit http://www.sibbald.com/cgi−bin/multimon.cgi

or http://www.sibbald.com/cgi−bin/multimoncss.cgi

multimon.cgi

This program monitors multiple UPSes at the same time. A typical output of multimon.cgi as displayed in
your Web browser might look like the following:

APC UPS management under Linux

multimon.cgi 94

http://www.sibbald.com/cgi-bin/multimon.cgi
http://www.sibbald.com/cgi-bin/multimoncss.cgi

The machines monitored as well as the values and their column headings are all configurable (see
/etc/apcupsd/hosts.conf and /etc/apcupsd/multimon.conf)

upsstats.cgi

By clicking on the system name in the multimon.cgi display, you will invoke upsstats.cgi for the specified
system, which will produce a bar graph display of three of the monitored values. For example,

APC UPS management under Linux

upsstats.cgi 95

You can display different bar graphs by selecting different variables from the drop down menus at the top of
each of the three bar graphs.

As with multimon, if you have your local host configured in the /etc/apcupsd/hosts.conf file, you can
execute it from a Unix shell from the source cgi directory as follows:

./upsstats.cgi

As with multimon, quite a few lines of html should then be displayed.

upsfstatus.cgi

If you would like to see all of the STATUS variables available over the network, click on the Data field of the
desired system, and your browser will display something like the following:

APC UPS management under Linux

upsfstatus.cgi 96

APC : 001,048,1109
DATE : Thu Dec 02 17:27:21 CET 1999
HOSTNAME : matou.sibbald.com
RELEASE : 3.7.0−beta−1
CABLE : Custom Cable Smart
MODEL : SMART−UPS 1000
UPSMODE : Stand Alone
UPSNAME : UPS_IDEN
LINEV : 223.6 Volts
MAXLINEV : 224.9 Volts
MINLINEV : 222.3 Volts
LINEFREQ : 50.0 Hz
OUTPUTV : 223.6 Volts
LOADPCT : 6.2 Percent Load Capacity
BATTV : 27.9 Volts
BCHARGE : 100.0 Percent
MBATTCHG : 5 Percent
TIMELEFT : 167.0 Minutes
MINTIMEL : 3 Minutes
SENSE : High
DWAKE : 060 Seconds
DSHUTD : 020 Seconds
LOTRANS : 196.0 Volts
HITRANS : 253.0 Volts
RETPCT : 050.0 Percent
STATFLAG : 0x08 Status Flag
STATUS : ONLINE
ITEMP : 35.1 C Internal
ALARMDEL : Low Battery
LASTXFER : U command or Self Test
SELFTEST : NO
STESTI : 336
DLOWBATT : 02 Minutes
DIPSW : 0x00 Dip Switch
REG1 : 0x00 Register 1
REG2 : 0x00 Register 2
REG3 : 0x00 Register 3
MANDATE : 01/11/99
SERIALNO : GS9903001147
BATTDATE : 01/11/99
NOMOUTV : 230.0
NOMBATTV : 24.0
HUMIDITY : N/A
AMBTEMP : N/A
EXTBATTS : 0
BADBATTS : N/A
FIRMWARE : 60.11.I
APCMODEL : IWI
END APC : Thu Dec 02 17:27:25 CET 1999

You should get pretty much the same output mixed in with html if you execute upsfstats.cgi directly from a
Unix shell in the cgi subdirectory as explained above for upsstats.cgi and multimon.cgi.

Working Example

To see a working example of the above programs, visit http://www.sibbald.com/cgi−bin/multimon.cgi.

APC UPS management under Linux

Working Example 97

http://www.sibbald.com/cgi-bin/multimon.cgi

Client Test Program

When your Network Information Server is up and running, you can test it using a simple program before
attempting to access the server via you Web server. The test program is called client.c and can be found in the
examples subdirectory of the source distribution. To build the program, when in the examples directory, use
something like the following:

cc client.c ../lib/libapc.a −o client

Then execute it:

./client <host>[:<port>] [<command>]

Where host is the name of the host or the IP address of the host running the Network Information Server. The
default is the local host. You may optionally specify a port address separated from the host name with a colon.
You may also optionally specify a single command to be executed. If you specify a command, that command
will be executed and the client program will exit. This is a very simple and useful way of pulling the status or
events data into another program such as Perl.

If no error messages are printed, it has most likely established contact with your server. Anything that you
type as standard input will be passed to the server, and anything the server sends back will be printed to
standard output. There are currently two commands recognized by the server: events and status. Hence the
following commands:

./client
status
events
xyz
^D

Should produce the status listing (the same as produced by apcaccess status), followed by the list of the last
10 events (in response to the events command), and finally Invalid command in response to the xyz input,
which is not a valid command. The control−D terminates the client program.

A Tip from Carl Erhorn for Sun Systems

It is possible to run the CGI code to monitor your UPS using the answerbook HTTP server that runs on
Solaris. As long as your server has the Answerbook2 web server installed and running, you can insert the cgi
scripts into the cgi directory of the web server, and access the cgi using something like:

http://hostname:8888/cgi/multimon.cgi

Credits

Many thanks go to Russell Kroll <rkroll at exploits.org> who wrote the CGI programs to work with his UPS
Monitoring system named Network UPS Tools (NUT). Thanks also to Jonathan Benson <jbenson at
technologist.com> for initially adapting the upsstatus.cgi program to work with apcupsd.

We have enhanced the bar graph program and hope that our changes can be useful to the original author in his

APC UPS management under Linux

Client Test Program 98

http://www.exploits.org/nut/library/apcsmart.html

project.

APC UPS management under Linux

Client Test Program 99

Apcupsd DATA Logging

This feature is somewhat outdated and not often used.

DATA logging

Data logging consists of periodically logging important data concerning the operation of the UPS. For the
definitive definition of the format, see log_data() in apcreports.c. The format varies according to the UPS
model and the information available from the UPS.

For UPS models, NBKPRO, SMART, SHARESMART, and MATRIX, the output is written in a format very
similar to what PowerChute writes. That is:

MinLineVoltage, MaxLineVoltage, OutputVoltage, BatteryVoltage, LineFrequency, LoadPercent,
UPSTemperature,AmbientTemperature,Humidity,LineVoltage, BatteryCharge,toggle

Any value that is not supported by your UPS such as AmbientTemperature and Humidity will be blank or
possibly as 0.0. In any case the commas before and after that field will still be output. The toggle value
alternates from 0 to 1 on each line. This was added at user request so that no two adjacent samples are
identical.

An actual example from the log file is:

 Nov 2 12:43:05 matou apcupsd[23439]: 224.9,227.5,226.2,27.74,50.00,100.0,30.6,,,226.2,50.0,1

APC UPS management under Linux

Apcupsd DATA Logging 100

Configuring Your EEPROM

If you have a SmartUPS, there are depending on the UPS at least 12 different values stored in the EEPROM
that determine how the UPS reacts to various conditions such as high line voltage, low line voltage, power
down grace periods, etc.

In general, for the moment, we do not recommend that you change your EEPROM values unless absolutely
necessary. There have been several reported cases of problems setting the Low Transfer Voltage.
Consequently, if at all possible, do not attempt to change this value.

If despite these warnings, you must change your EEEPROM, we recommend connecting your UPS to a
Windows or NT machine running PowerChute and making the changes.

apcupsd No Longer Configures EEPROM

Unlike version 3.8.6, apcupsd version 3.10.x no longer has code to program the EEPROM. Instead we have
implemented interactive EEPROM modification code in the apctest program. EEPROM programming must
be done with apcupsd stopped so that apctest can access the UPS. In addition, EEPROM programming is
currently implemented only for UPSes using the Smart protocol running in serial mode. Perhaps at a later time
when the appropriate kernel modifications are standard, we will extend EEPROM programming to USB
models.

Before changing your EEPROM, you should make a printed copy of the current state of your UPS before any
EEPROM changes so that you can check the changes that you have made. Do so by printing a copy of the
output from apcaccess status and also print a copy of the output from apcaccess eprom.

Once this is done, choose which values of the EEPROM you want to change. Typical output from apcacces
should look like the following:

apcaccess eeprom

Valid EPROM values for the SMART−UPS 1000

 Config Current Permitted
Description Directive Value Values
==
Upper transfer voltage HITRANSFER 253 253 264 271 280
Lower transfer voltage LOTRANSFER 196 196 188 208 204
Return threshold RETURNCHARGE 0 00 15 50 90
Output voltage on batts OUTPUTVOLTS 230 230 240 220 225
Sensitivity SENSITIVITY H H M L L
Low battery warning LOWBATT 2 02 05 07 10
Shutdown grace delay SLEEP 20 020 180 300 600
Alarm delay BEEPSTATE 0 0 T L N
Wakeup delay WAKEUP 0 000 060 180 300
Self test interval SELFTEST 336 336 168 ON OFF

where the Current Value will depend on how your UPS is configured, and the Permitted Values will depend
on what UPS model you have.

APC UPS management under Linux

apcupsd No Longer Configures EEPROM 101

Using apctest to Configure Your EEPROM

To make the EEPROM changes with apctest you must first stop the apcupsd daemon. See Stopping
Apcupsd in the appropriate section of this manual.

apctest is not installed during the installation process, so to use it you will need to do the following after
having built apcupsd:

cd <apcupsd−source>/src
su
<root−password>
./apctest

At that point, you should get output similar to the following:

2003−07−07 11:19:21 apctest 3.10.6 (07 July 2003) redhat
Checking configuration ...
Attached to driver: apcsmart
sharenet.type = DISABLE
cable.type = CUSTOM_SMART

You are using a SMART cable type, so I'm entering SMART test mode
mode.type = SMART
Setting up serial port ...
Creating serial port lock file ...
Hello, this is the apcupsd Cable Test program.
This part of apctest is for testing Smart UPSes.
Please select the function you want to perform.

1) Query the UPS for all known values
2) Perform a Battery Runtime Calibration
3) Abort Battery Calibration
4) Monitor Battery Calibration progress
5) Program EEPROM
6) Enter TTY mode communicating with UPS
7) Quit

Select function number:

You might want to run option 1) just to ensure that apctest is properly talking to your UPS. It will produce
quite about 70 lines of output.

To program the EEPROM, select option 5), and you will get the EEPROM menu as follows:

This is the EEPROM programming section of apctest.
Please select the function you want to perform.

 1) Print EEPROM values
 2) Change Battery date
 3) Change UPS name
 4) Change sensitivity
 5) Change alarm delay
 6) Change low battery warning delay
 7) Change wakeup delay
 8) Change shutdown delay
 9) Change low transfer voltage
10) Change high transfer voltage

APC UPS management under Linux

Using apctest to Configure Your EEPROM 102

11) Change battery return threshold percent
12) Change output voltage when on batteries
13) Change the self test interval
14) Set EEPROM with conf file values
15) Quit

Select function number:

If you wish to use the old pre−3.10.x method of EEPROM programming with values specified in the
apcupsd.conf file, select option 14). However, we recommend that you start with item 1) to see what
EEPROM values apctest finds. This command can take a few minutes to run, so be patient. The values
printed should be the same as what you got using apcaccess, but in addition, the EEPROM battery date and
UPS Name should be displayed. For example:

Select function number: 1

Doing prep_device() ...

Valid EEPROM values for the SMART−UPS 1000

 Config Current Permitted
Description Directive Value Values
===
Upper transfer voltage HITRANSFER 253 253 264 271 280
Lower transfer voltage LOTRANSFER 196 196 188 208 204
Return threshold RETURNCHARGE 0 00 15 50 90
Output voltage on batts OUTPUTVOLTS 230 230 240 220 225
Sensitivity SENSITIVITY H H M L L
Low battery warning LOWBATT 2 02 05 07 10
Shutdown grace delay SLEEP 20 020 180 300 600
Alarm delay BEEPSTATE 0 0 T L N
Wakeup delay WAKEUP 0 000 060 180 300
Self test interval SELFTEST 336 336 168 ON OFF
===
Battery date: 07/31/99
UPS Name : UPS_IDEN

At this point, you can select any item from 2) to 13) to modify the appropriate value. You will shown the
existing value and prompted for the new values.

We recommend that you change the EEPROM as little as is absolutely necessary since it is a somewhat
delicate process that has occasionally produced problems (i.e. improper EEPROM values are displayed after
the update). Fortunately this seems to be quite rare and was much more likely to occur with the old "batch"
like process especially if incorrect values were supplied.

APC UPS management under Linux

Using apctest to Configure Your EEPROM 103

Apcupsd EVENTS
When apcupsd detects anomalies from your UPS device, it will make some decisions that usually result in
one or more calls to the script located in /etc/apcupsd/apccontrol. The apccontrol file is a shell script that
acts on the first argument that apcupsd passes to it. These actions are set up by default to sane behavior for all
possible situations apcupsd is likely to detect from the UPS. Nevertheless you can change the apccontrol
behavior for every single action. To do so create a file with the same name as the action, which is passed as a
command line argument. Put your script in the /etc/apcupsd directory.

These events are sent to the system log, optionally sent to the temporary events file
(/etc/apcupsd/apcupsd.events), and they also generate a call to /etc/apcupsd/apccontrol which in turn will
call any scripts you have placed in the /etc/apcupsd directory.

Normally, /etc/apcupsd/acpcontrol is called only by apcupsd. Consequently, you should not invoke it
directly. However, it is important to understand how it functions, and in some cases, you may want to change
the messages that it prints using wall. We recommend that you do so by writing your own script to be invoked
by apccontrol rather than by modifying apccontrol directly. This makes it easier for you to upgrade to the
next version of apcupsd

In other case, you may want to write your own shell scripts that will be invoked by apccontrol. For example,
when a power fail occurs, you may want to send an email message to root. At present the arguments that
apccontrol recognizes are:

How apcupsd calls apccontrol

When apcupsd detects an event, it calls the apccontrol script with four arguments as:

apccontrol <event> <ups−name> <connected> <powered>

where:

event
is the event that occurred and it may be any one of the values described in the next section.

ups−name
is the name of the UPS as specified in the configuration file (not the name in the EEPROM). For
version 3.8.2, this is always set to Default

connected
is 1 if apcupsd is connected to the UPS via a serial port (or a USB port). In most configurations, this
will be the case. In the case of a Slave machine where apcupsd is not directly connected to the UPS,
this value will be 0.

powered

is 1 if apcupsd is powered by the UPS and 0 if not. In version 3.8.2, this value is always 1.

apccontrol Command Line Options

apccontrol accepts the following command line options:

annoyme

APC UPS management under Linux

Apcupsd EVENTS 104

Does a printf "Power problems please logoff." | wall then exits.
changeme

Does a printf "Emergency! UPS batteries have failed\nChange them NOW" | wall then
exits.

commfailure
Does a printf "Warning serial port communications with UPS lost." | wall then exits.

commok
Does a printf "Serial communications with UPS restored." | wall then exits.

doreboot
Does a reboot of the system by calling shutdown −r now

doshutdown
Does a shutdown of the system by calling shutdown −h now

emergency
Does an emergency shutdown of the system by calling shutdown −h now

failing
Does a printf "UPS battery power exhausted. Doing shutdown.\n" | wall then exits.

loadlimit
Does a printf "UPS battery discharge limit reached. Doing shutdown.\n" | wall then exits.
After completing this event, apcupsd will immediately initiate a doshutdown event.

mainsback
Attempts to cancel the shutdown with a shutdown −c

onbattery
Does a printf "Power failure. Running on UPS batteries." | wall then exits.

powerout
Does a printf "Warning power loss detected." | wall then exits.

remotedown
Does a shutdown −h now

restartme
Terminates the currently running apcupsd and then restarts it.

runlimit
Does a printf "UPS battery runtime percent reached. Doing shutdown.\n" | wall then exits.
After completing this event, apcupsd will immediately initiate a doshutdown event.

timeout
Does a printf "UPS battery runtime limit exceeded. Doing shutdown.\n" | wall then exits.
After completing this event, apcupsd will immediately initiate a doshutdown event.

startselftest
This is called when apcupsd detects that the UPS is doing a self test. No action is taken.

endselftest
This is called when apcupsd determines that a self test has been completed. No action is taken.

To write your own routine for the powerout action, you create shell script named powerout and put it in the
lib directory (normally /etc/apcupsd). When the powerout action is invoked by apcupsd, apccontrol will
first give control to your script. If you want apccontrol to continue with the default action, simply exit your
script with an exit status of zero. If you do not want apccontrol to continue with the default action, your script
should exit with the special exit code of 99. However, in this case, please be aware that you must ensure
proper shutdown of your machine if necessary.

Some sample scripts (onbattery and mainsback) that email power failure messages can be found in the
examples directory of the source code.

APC UPS management under Linux

Apcupsd EVENTS 105

APC UPS management under Linux

Apcupsd EVENTS 106

Apcupsd Frequently Asked Questions

See the bugs section of this document for a list of known bugs and solutions.

What UPS brands does apcupsd support?

Currently apcupsd supports only APC UPSes. However, some companies such as Hewlett Packard
put their own brand name on APC manufactured UPSes. Thus even if you do not have an APC
branded UPS, it may work with apcupsd. You will need to know the corresponding APC model
number. apcupsd supports all the popular APC models. See the installation and configurations
sections of this document for more details.

Does apcupsd support Windows?

With release 3.8.0, apcupsd now runs on Win95/98, WinMe, WinNT, and Win2000 machines. All
features of the Unix versions of apcupsd are implemented. The UPS EEPROM programming features
of apcupsd have not been tested under Windows. Version 3.8.0 does not support simple signaling
UPSes (BackUPS, etc). Version 3.8.1 does support most simple signaling UPSes, but not all cables
(due to deficiencies in the Windows serial port API). Please note that we have had reports that
apcupsd does not work properly on the WinXP system. If you have any information on this, please
email us.

I don't have a cable, which one should I build?

First you must know if you have a Smart UPS or a simple signaling UPS −− See the table of
supported UPSes in the Configuration Chapter of this manual. If you have a Smart UPS (or a
SubSmart), we recommend building a Smart−Custom Cable. If you have a Simple Signaling UPS, we
recommend that you build a Simple−Custom Cable.

How much CPU resources does apcupsd use?

Depending on your CPU speed, you may see more or less of the CPU consumed by apcupsd. On a
400MHz Unix system, the CPU usage should fall well below 0.1%. On slower systems, the
percentage will increase proportionally to the decrease in the CPU speed. On a 400Mhz Win98
machine, the CPU usage will be on the order of 0.5−1.0%. This is higher than for Unix systems.
However, compared to the 30% CPU usage by APC's PowerChute (the version on the CDROM
shipped with my UPS), apcupsd's 0.5−1.0% is very modest.
If you configure apcupsd to run with pthreads (−−with−pthreads on the ./configure line), apcupsd
will run considerably faster, otherwise said, it will consume less of your CPU, and it will use
approximately one third of the memory. For example, Carl Erhorn reports that on his Solaris system,
"With the old 3−process version, we averaged about 4.8MB of total memory used. With the new
single process, we use only about 1.7MB! That's also a very good improvement."

What language is apcupsd written in?

It is written entirely in C.

We are using apcupsd−3.8.1−1 in RedHat 6.2. The slave, when shutting down, is reporting an error at line
436 of apcupsd.c. The error is initiated by apcupsd −−killpower ! What can we do to fix this, and is it
critical?

APC UPS management under Linux

Apcupsd Frequently Asked Questions 107

No, the error is not serious. Unfortunately, the documentation in the area of master/slaves is not very
detailed, and for that reason, your slave setup is not totally correct as explained below.
On master machines, we modify /etc/rc.d/init.d/halt to re−invoke apcupsd with the −−killpower option
(actually the script apccontrol is called). This causes the UPS to send the codes to the UPS to make it
power off.

On slave machines, these modifications should not be made to the /etc/rc.d/init.d/halt script since the
slave has no connection to the UPS.

To eliminate the problem, on all your slave machines, either restore the original halt file, or simply
delete all the lines containing ***apcupsd***, which were inserted by the apcupsd installation
process.

To test apcupsd, I unplugged the UPS to simulate a power outage. After the machine went into the shutdown
process I plugged the UPS back into the commercial power source. This caused the shutdown process to hang
after the daemon tried to shut−off the ups. Have you run into this problem, and if so do you have a remedy?

Normally, once the shutdown process has begun, we cannot stop it, though there IS some code that
tries to do so, we don't consider it a very good idea − how do you stop a shutdown that has killed off
half of the daemons running on your system? Most likely you will be left with an unusable system. In
addition, when apcupsd is re−executed in the halt script after the disks are synced, it tries to shut off
the UPS power, but the UPS will generally refuse to do so if the AC power is on. Since we cannot be
100% sure whether or not the UPS will shut off the power, we don't attempt to reboot the system if we
detect that the power is back as it might then get caught by a delayed power off (at least for Smart
UPSes).

After running apcupsd for a while, I get the following error:
"Serial communications with UPS lost." What is the problem?

We use standard Unix serial port read() and write() calls so once a connection is made, we generally
have few problems. However, there have been reports that APC's SNMP Management Card can cause
serial port problems. If you have such a card, we suggest that you remove it and see if the problem
goes away. It is also possible that some other process such as a getty is reading the serial port.

When apcupsd starts, I get the following error: "attach_shmarea: cannot get shm area: Identifier removed."
What is the problem?

This problem and the problem of cannot create shm area are due to the fact that the shared memory
key that apcupsd wants to use is already in use. This happens most frequently when there is an old
zombie apcupsd process still in the system.
The solution is to remove the old process.
You can often see what is going on by doing a: ipcs command as root when apcupsd is not running. If
you see a segment with the key 0x10feed01, you can be sure there is some old apcupsd process still
using it. If you cannot kill the old process, you can try using ipcrm (see the man pages).
Recent versions of apcupsd starting with apcupsd−3.8.2Beta6 should no longer have this problem as
they will automatically try using a different key.

I get the following error: "Starting apcupsd power management. Mar 20 21:19:40 box apcupsd[297]:
apcupsd FATAL ERROR in apcserial.c at line 83. Cannot open UPS tty /dev/cua01: No such file or
directory." What is the problem?

The two most likely causes of your problem are:

1. You have the wrong serial port device name in the apcupsd.conf file.

APC UPS management under Linux

Apcupsd Frequently Asked Questions 108

2. The device name is not defined on your system.

Suggestions for proceeding:

For the first item, check what your serial port device should be named. You might be able to find the
name with an:

ls /dev

normally there will be hundreds or even thousands of names that print.

If that doesn't produce anything useful, you can try step 2. Perhaps your device is not defined.

To get more information on your devices try:

man MAKEDEV

or

find / −name MAKEDEV

it is often located in /dev/MAKEDEV
Looking at the documentation may tell you what the correct name is, or at least allow you to create
the device.

How do I ensure that the slaves shutdown before the master?

There are several strategies for getting the slaves properly shutdown before shutting down the master.
The first is to make the master wait a period of time for the slaves to shutdown before doing its own
shutdown. Currently, the master always waits 30 seconds before starting its own shutdown. If this is
insufficient, you can add additional time by putting an appropriate sleep shell command in the
/etc/apcupsd/apccontrol file just before the actual system shutdown command is executed (there are
something like 3 places).

The second strategy is to put a TIMEOUT value in the apcupsd.conf file on the slave that is
sufficiently short that you are sure that the slave will shutdown before the master. If the shutdown is
done with a poweroff, this will also save power so that the master can stay up longer.

How do I ensure that my database server is correctly shutdown?

You simply add whatever commands are necessary in the appropriate case statements in
/etc/apcupsd/apccontrol, which is a standard script file that is called to actually do the shutdown.
Alternatively, you can add your own script file that will be called before doing the commands in
apccontrol. Your script file must have the same name as the appropriate case statement in
apccontrol; it must be executable; and it must be in the same directory as apccontrol.

I have Win2k Advanced server, and when starting the service, get: Could not start the Apcupsd Server service
on Local Computer. Error 1067: The process terminated unexpectedly

The most common error causing your problem is an incorrect serial port specification on your
DEVICE directive. It should be
DEVICE /dev/com2

On WinNT machines, and probably Win2000 machines you MUST use /dev/com2 unless you modify
the behavior of the boot process to prevent Windows from probing the port. This is documented in our

APC UPS management under Linux

Apcupsd Frequently Asked Questions 109

manual for WinNT. Although I imagine it is the same for Win2000, I am not sure.

The second most common problem is bad placement of the files −− i.e. you did not install them in
c:\apcupsd Unfortunately for the current release, this path is "hard coded" into the binaries.

The third most common problem is that you did not run the setup.bat script after loading the files.
This is necessary to install apcupsd as a service.

If all the above fails, try starting apcupsd by hand inside a CYGWIN rxvt window −− if you use an
rxvt window rather than a DOS window, you will see many more of the error messages.

In addition, most of the apcupsd startup errors are reported in:

c:\apcupsd\etc\apcupsd\apcupsd.events

many error messages associated with Windows services will be reported in the Windows System Log.

When using USB, I get the following log messages: usb−uhci.c: interrupt, status 3, frame# 826. What does it
mean?

It means one transfer worked (bit 0 in status) and another one (after that) failed (bit 1) at time frame
826. This kind of soft error is common on USB and if everything seems to be working, you can ignore
it.

apcnisd doesn't work. It always gives: FATAL ERROR in apcipc.c at line 497. attach_shmarea: shared
memory version mismatch (or UPS not yet ready to report)

Unfortunately apcnisd does not work with pthreads enabled. You have the following options:
1. If you build with pthreads enabled, apcnisd will
 not work no matter what you do.

2. If you build with pthreads enabled, and you want
 to have network information from apcupsd, you must
 set NETSERVER ON. This is the configuration we
 recommend (i.e. using pthreads and NETSERVER ON).

3. If you build with pthreads disabled, you have the
 choice of using apcnisd or the NETSERVER code. If
 you wish to use apcnisd, you must set NETSERVER OFF

4. If you build with pthreads disabled, and you do
 not use apcnisd, you must set NETSERVER ON if you
 wish to have network information from apcupsd.

Concerning the names one sees with "ps".

1. With pthreads enabled, on Linux machines, you will
 see multiple copies of apcupsd running, but they
 will all be called apcupsd rather than apcmain,
 apcser, ... They will still run as LWP, but we
 are unable to set the names on threads (LWP). Note,
 though ps shows "multiple copies" of apcupsd running,
 it is really one memory image but with multiple threads.

2. With pthreads disabled, we are able to set the
 child process names (at least on Linux) so you
 will see apcmain, apcser, apcnis, ... in the
 ps output. In this case, they are really different
 processes each with its own memory image (the

APC UPS management under Linux

Apcupsd Frequently Asked Questions 110

 code image is most likely shared).

APC UPS management under Linux

Apcupsd Frequently Asked Questions 111

Apcupsd System Logging

The apcupsd philosophy is that all logging should be done through the syslog facility (see: man syslog). This
is now implemented with the exceptions that STATUS logging, for compatibility, with prior versions is still
done to a file, and EVENTS logging can be directed to a "temporary" file so that it can be reported by the
network information server.

Apcupsd logging into four separate types called:

1. DEBUG
2. DATA
3. STATUS
4. EVENTS

DEBUG Logging

Debug logging consists of debug messages. Normally these are turned on only by developers, and currently
there exist very few of these debug messages.

DATA Logging

Data logging consists of periodically logging important data concerning the operation of the UPS. See the
DATA Format section of this manual for more details.

STATUS Logging

Status logging consists of logging all available information known about your UPS as a series of ASCII
records. This information is also made available by the apcupsd network information server.

For more details on STATUS logging, see the STATUS Format section of this manual.

EVENTS Logging

Events logging consists of logging events as they happen. For example, successful startup, power fail, battery
failure, system shutdown, ...

See the EVENTS Format section of this manual for more details.

Implementation Details

In order to ensure that the data logged to syslog() can be directed to different files, I have assigned syslog()
levels to each of our four types of data as follows:

1. DEBUG logging has level LOG_DEBUG

2. DATA logging has level LOG_INFO

3. STATUS logging has level LOG_NOTICE

APC UPS management under Linux

Apcupsd System Logging 112

4. EVENTS logging has levels LOG_WARNING, LOG_ERR, LOG_CRIT, and LOG_ALERT

It should be noted that more work needs to be done on the precise definitions of each of the levels for
EVENTS logging. Currently, it is roughly broken down as follows:

LOG_WARNING general information such as startup, etc.

LOG_ERR an error condition detected, e.g. communications problem with the UPS.

LOG_CRIT a serious problem has occurred such as power failure, running on UPS batteries, ...

LOG_ALERT a condition that needs immediate attention such as pending system shutdown, ...

The default Facility for syslog() logging is DAEMON, although this can be changed with the FACILITY
directive in apcupsd.conf. In the following example, we should the facility as local0.

More work needs to be done to the code to ensure that it corresponds to the above levels.

As a practical example of how to setup your syslog() to use the new logging feature, suppose you wish to
direct all DATA logging to a file named /var/log/apcupsd.data, all EVENTS to the standard /var/log/messages
file (to be mixed with other system messages), and at the same time send all EVENTS to
/var/log/apcupsd.events, and finally, you want to send all STATUS logging to the named pipe
/var/log/apcupsd.status

First as root, you create the named pipe:

mkfifo /var/log/apcupsd.status

change its permissions as necessary or use the −m option to set them when creating the pipe.

Then you modify your /etc/syslog.conf file to direct the appropriate levels of messages where you want them.
To accomplish the above, my syslog.conf file looks like:

exclude all apcupsd info by default
*.info;local0.none /var/log/messages

Everything for apcupsd goes here
local0.info;local0.!notice /var/log/apcupsd.data
local0.notice;local0.!warn |/var/log/apcupsd.status
local0.warn /var/log/apcupsd.events
local0.warn /var/log/messages

Developer's Notes

All logging functions and all error reporting are now done through the log_event() subroutine call. Exceptions
to this are: initialization code where printf's are done, and writing to the status file. Once the initialization
code has completed and the fork() to become a daemon is done, no printf's are used. log_event() has exactly
the same format as syslog(). In fact, the subroutine consists of only a syslog() call. If anyone really wishes to
log to a file, the code to do so can easily be done by adding code to log_event() in apclog.c.

APC UPS management under Linux

 Developer's Notes 113

Master/Slave Configuration

General

If you have two or more computers that are powered by the same UPS and they are connected by a network,
you can configure apcupsd so that the computer that controls the UPS (connected by the serial port or USB
port), which is called the master, can provide information to other machines powered by the UPS, called
slaves. When the master detects a power failure, it will notify all the slaves (maximum of twenty). If the
master detects that the battery is low, it will also notify the slave so that the slave may perform a shutdown.

In addition, in cases where you wish to keep the master up longer than the slave, you can configure the slave
to shutdown in a predetermined time after the UPS goes on batteries.

If a picture is worth a thousand words for you, please see the Three Major Configuration Possibilities for
Apcupsd section of the Configuration chapter of this manual.

Configuration Directives

The minimum set of configuration directive changes needed to create a proper master and slave configuration
files is described in the Configuration Examples section of this manual.

The details of these directives is explained in the UPS Sharing section of the Configuration chapter of this
document.

In addition, sample master and slave configuration files can be found in the <src>/examples directory
(apcupsd.master.conf and apcupsd.slave.conf).

Master/Slave Problems

If you are having problems getting a master/slave configuration to work, or you are getting error messages,
please see the Trouble Shooting Apcupsd Chapter of this manual for more details.

Master/Slave Shutdown

For additional details of shutting down a master/slave configuration, please see the Master/Slave Shutdown
section of the Shutdown chapter of this manual.

Master/Slave Networking using NIS and the NET Driver

It is also possible to implement a network of master/slave apcupsds using the new 3.10.x code and the net
driver. This mode of master/slave networking is considerably different from the old method described at the
beginning of this chapter. In the old code, there is a lot of configuration on both the master and slave side, and
the master polls or sends info to the slave. Using the net driver is much simpler. However, you should
carefully check that the slave does a proper shutdown. In the master/slave code, the master ensures the best it
can that the slave is shutdown or notified before it shuts down itself. On the other hand, using the net driver,
the master knows nothing about the slaves that may be listening and thus takes no special precautions to
ensure that the slaves receive the shutdown signal. Since the slave reads the master's data once per second
there should be no shutdown problems, and our experience confirms this. This point can be answered in your

APC UPS management under Linux

Master/Slave Configuration 114

case by carefully testing the shutdown.

In this master/slave mode, the master is a standard stand alone configuration except that it must have
NETSERVER on in the configuration file and have an NISPORT nnn defined. Thus any apcupsd running in
this mode then becomes the master.

The slave then uses the net driver to connect to the master's NIS output. In this mode, the slave decides how
often to poll the master for the NIS information. The slave copy of apcupsd, have UPSTYPE net, which will
invoke the "network" driver. By setting this machine's DEVICE to be master−ip:master−NIS−port it will
automatically connect to the master and use the master's signals to shutdown the computer. In the example net
slave configuration file below, the slave uses the NIS information provided by the computer tibs on port 3551.

apcupsd.conf v1.1
UPSCABLE ether
UPSTYPE net
Specify the server name:port where NIS is running
DEVICE tibs:3551
LOCKFILE /var/lock
BATTERYLEVEL 5
MINUTES 3
TIMEOUT 0
ANNOY 300
ANNOYDELAY 60
NOLOGON disable
EVENTSFILE /etc/apcupsd/apcupsd.events
UPSCLASS standalone
UPSMODE disable
#
Use this to control the poll time.
the default is 60 or 1 minute
#
NETTIME 30

APC UPS management under Linux

Master/Slave Configuration 115

Apcupsd Security Issues

apcupsd runs as root.•
If you have NETSERVER ON in your apcupsd.conf file, be aware that anyone on the network can
read the status of your UPS. This may or may not pose a problem. If you don't consider this
information privileged, as is the case for me, there is little risk. In addition, if you have a firewall
between your servers and the Internet, hackers will not have access to your UPS information.
Additionally, you can restrict who can access your apcupsd server by using the INETD services and
using access control lists with a TCP wrapper or by configuring TCP wrappers in apcupsd (see below
for TCP Wrapper details).

•

If you are running master/slave networking with a single UPS powering multiple machines, be aware
that it is possible for someone to simulate the master and send a shutdown request to your slaves. The
slaves do check that the network address of the machine claiming to be the master is that same as the
address returned by DNS corresponding to the name of the master as specified in your configuration
file.

•

TCP Wrappers

As of apcupsd version 3.8.2, TCP Wrappers are implemented if you turn them on when configuring
(./configure −−with−libwrap). With this code enabled, you may control who may access your apcupsd via
TCP connections (the Network Information Server, and the Master/Slave code). This control is done by
modifying the file: /etc/hosts.allow. This code is implemented but untested. If you use it, please send us some
feedback.

APC UPS management under Linux

Apcupsd Security Issues 116

Apcupsd STATUS Logging

There is a good deal of information available about the UPS and apcupsd's status. This document describes
the format of that information.

STATUS format

The STATUS output is in ASCII format with a single data value or piece of information on each line output.
Because not all UPSes supply the same information, the output varies based on the type of UPS that you are
using. In general, if the information is not available for your UPS, the data portion of the output record will
contain an N/A indicating that the information is not available.

Status logging consists of periodically logging ALL available information concerning the UPS. Since the
volume of data is rather large (over 1000 bytes per status), the STATUS data is not automatically sent to the
system log file, instead, it is written as a series of data records to a specific file (normally
/etc/apcupsd/apcupsd.status).

After each write, the file is rewound so that the size of the file remains constant. At the current time, this file
is 1135 bytes. The format of this file is very similar to the old apcupsd procfs file. The STATUS file is kept
for backward compatibility and will be eliminated in a future version of apcupsd. The preferred method for
obtaining this information is from apcaccess status or by using the apcupsd network information server.

SmartUps

From the following models:

UPSTYPE Descriptive Name
=========== =================
newbackupspro Smarter BackUPS Pro
backupspropnp Smarter BackUPS Pro
smartups SmartUPS
matrixups MatrixUPS
sharesmart ShareUPS Advanced Port

STATUS logging

To make reading the status data reliable via a named pipe, the first record written contains a version number,
the number of records that follow the first record, and the total number of bytes in those subsequent records.
An actual example of such a status file (/etc/apcupsd/apcupsd.status) is:

Consequently, the first record always consists of 24 bytes (23 characters followed by a newline). This record
starts with APC and as indicated in the example above is followed by 28 records consisting of 675 bytes. The
last record begins with END APC and contains the date and time matching the DATE record.

Documentation of each record needs to be written. In the coming weeks, I plan to add additional records and
possibly change the names of some of the fields.

When this data is written to a file, it is written as two records, the first record, and all the other records
together. In reading the file, it can be either be read a record at a time, or in one big read.

APC UPS management under Linux

Apcupsd STATUS Logging 117

When this data is written to syslog(), it is written a record at a time. The first record is the first 24 bytes. By
having the number of records and the size in the first record, the complete status can be reliably reassembled.

An example of output from an international SmartUPS 1000 follows:

DATE : Wed Sep 27 17:30:23 CEST 2000
HOSTNAME : polymatou.sibbald.com
RELEASE : 3.7.3−20000925
CABLE : Custom Cable Smart
MODEL : SMART−UPS 1000
UPSMODE : Stand Alone
STARTTIME: Wed Sep 27 10:39:23 CEST 2000
UPSNAME : UPS_IDEN
STATUS : ONLINE
LINEV : 235.3 Volts
LOADPCT : 9.3 Percent Load Capacity
BCHARGE : 100.0 Percent
TIMELEFT : 130.0 Minutes
MBATTCHG : 5 Percent
MINTIMEL : 3 Minutes
MAXTIME : 0 Seconds
MAXLINEV : 239.2 Volts
MINLINEV : 234.0 Volts
OUTPUTV : 236.6 Volts
SENSE : High
DWAKE : 000 Seconds
DSHUTD : 020 Seconds
DLOWBATT : 02 Minutes
LOTRANS : 196.0 Volts
HITRANS : 253.0 Volts
RETPCT : 000.0 Percent
ITEMP : 32.8 C Internal
ALARMDEL : 5 seconds
BATTV : 27.9 Volts
LINEFREQ : 50.0 Hz
LASTXFER : Line voltage notch or spike
NUMXFERS : 0
XONBATT : N/A
TONBATT : 0 seconds
CUMONBATT: 0 seconds
XOFFBATT : N/A
SELFTEST : NO
STESTI : 336
STATFLAG : 0x08 Status Flag
DIPSW : 0x00 Dip Switch
REG1 : 0x00 Register 1
REG2 : 0x00 Register 2
REG3 : 0x00 Register 3
MANDATE : 07/31/99
SERIALNO : QS9931125245
BATTDATE : 07/31/99
NOMOUTV : 230
NOMBATTV : 24.0
HUMIDITY : N/A
AMBTEMP : N/A
EXTBATTS : 0
BADBATTS : N/A
FIRMWARE : 60.11.I
APCMODEL : IWI
END APC : Wed Sep 27 17:30:31 CEST 2000

APC UPS management under Linux

Apcupsd STATUS Logging 118

The meaning of the above variables are:

APC
is the header record indicating the STATUS format revision level, the number of records that follow
the APC statement, and the number of bytes that follow the record.

DATE
is the date and time that the information was last obtained from the UPS.

HOSTNAME
is the name of the machine that collected the UPS data.

RELEASE
is the apcupsd release number.

CABLE
is the cable as specified in the configuration file.

MODEL
is the UPS model as derived from information from the UPS.

UPSMODE
is the mode in which apcupsd is operating.

STARTTIME
is the time/date that apcupsd was started.

UPSNAME
is the name of the UPS as stored in the EEPROM.

STATUS
is the current status of the UPS (ONLINE, CHARGING, ONBATT,...)

MASTERUPD
is the last time the master sent an update to the slave. This value is present only in slave
configurations.

LINEV
is the current line voltage as returned by the UPS.

LOADPCT
is the percentage of load capacity as estimated by the UPS.

BCHARGE
is the percentage charge on the batteries.

TIMELEFT
is the remaining runtime left on batteries as estimated by the UPS.

MBATTCHG
if the battery charge percentage (BCHARGE) drops below this value, apcupsd will shutdown your
system.

MINTIMEL
apcupsd will shutdown your system if the remaining runtime equals or is below this point.

MAXTIME
apcupsd will shutdown your system if the time on batteries exceeds this value. A value of zero
disables the feature.

MAXLINEV
is the maximum line voltage since the last STATUS as returned by the UPS.

MINLINEV
is the minimum line voltage since the last STATUS as returned by the UPS.

OUTPUTV
is the voltage the UPS is supplying to your equipment.

SENSE

APC UPS management under Linux

Apcupsd STATUS Logging 119

is the sensitivity level of the UPS to line voltage fluctuations.
DWAKE

is the amount of time the UPS will wait after a power off condition when the power is restored.
DSHUTD

is the grace delay that the UPS gives after receiving a power down command from apcupsd before it
powers off your equipment.

DLOWBATT
is the remaining runtime below which the UPS sends the low battery signal. At this point apcupsd
will force an immediate emergency shutdown.

LOTRANS
is the line voltage below which the UPS will switch to batteries.

HITRANS
is the line voltage above which the UPS will switch to batteries.

RETPCT
is the percentage charge that the batteries must have after a power off condition before the UPS will
restore power to your equipment.

STATFLAG
is a status flag indicating the UPS status. See STATUS.

ITEMP
is the internal UPS temperature as supplied by the UPS.

ALARMDEL
is the delay period for the UPS alarm.

BATTV
is the battery voltage as supplied by the UPS.

LINEFREQ
is the line frequency in Hertz as given by the UPS.

LASTXFER
is the reason for the last transfer to batteries.

NUMXFERS
the number of transfers to batteries since apcupsd startup.

XONBATT
time and date of last transfer to batteries, or N/A.

TONBATT
time in seconds currently on batteries, or 0.

CUMONBATT
total (cumulative) time on batteries in seconds since apcupsd startup.

XOFFBATT
time and date of last transfer from batteries, or N/A.

SELFTEST
is the results of the last self test, and may have the following values:

OK − self test indicates good battery
BT − self test failed due to insufficient battery capacity
NG − self test failed due to overload
NO − No results (i.e. no self test performed in the last 5 minutes).

STESTI
is the interval in hours between automatic self tests.

STATFLAG
status flag. English version is given by STATUS.

DIPSW
is the dip switch settings.

APC UPS management under Linux

Apcupsd STATUS Logging 120

REG1
is the value from the UPS fault register 1.

REG2
is the value from the UPS fault register 2.

REG3
is the value from the UPS fault register 3.

MANDATE
is the date the UPS was manufactured.

SERIALNO
is the UPS serial number.

BATTDATE
is the date that batteries were last replaced.

NOMOUTV
is the output voltage that the UPS will attempt to supply when on battery power.

NOMBATTV
is the nominal battery voltage.

HUMIDITY
is the humidity as measured by the UPS.

AMBTEMP
is the ambient temperature as measured by the UPS.

EXTBATTS
is the number of external batteries as defined by the user. A correct number here helps the UPS
compute the remaining runtime more accurately.

BADBATTS
is the number of bad battery packs.

FIRMWARE
is the firmware revision number.

APCMODEL
is the old APC model identification code.

END APC
is the time and date that the STATUS record was written.

BackUPS Pro and SmartUPS v/s Smart Signals

LINEFAIL : OnlineStatus
BATTSTAT : BatteryStatus
MAINS : LineVoltageState
LASTEVNT : LastEventObserved

BackUPS and NetUPS Simple Signals

LINEFAIL : OnlineStatus
BATTSTAT : BatteryStatus

BackUPS Pro and SmartUPS v/s Smart Signals

OnlineStatus BatteryStatus LineVoltageState LastEventObserved

APC UPS management under Linux

BackUPS Pro and SmartUPS v/s Smart Signals 121

BackUPS and NetUPS Simple Signals

OnlineStatus BatteryStatus

Logging the STATUS Information

If specified in the configuration file, the STATUS data will also be written to the system log file. Please note,
that it would not normally be wise to write this data to a normal system log file as there is no mechanism in
syslog() to rewind the file and hence the log file would quickly become enormous. However, in two cases, it
can be very useful to use syslog() to write this information.

The first case is to setup your syslog.conf file so that the data is written to a named pipe. In this case, normally
not more than about 8192 bytes of data will be kept before it is discarded by the system.

The second case is to setup your syslog.conf file so that the status data is sent to another machine, which
presumably then writes it to a named pipe. Consequently, with this mechanism, provides a simple means of
networking apcupsd STATUS information.

Although we mention system logging of STATUS information, we strongly recommend that you use the
apcupsd network information server to network this information. Also, see the system logging section of this
manual.

APC UPS management under Linux

BackUPS and NetUPS Simple Signals 122

APC's smart protocol

Credits
The APC UPS protocol was originally analyzed by Pavel Korensky with additions from Andre H. Hendrick
beginning in 1995, and we want to give credit for good, hard work, where credit is due. After having said that,
you will see that Steven Freed built much of the orginal apcupsd information file. [Comment inserted by
Riccardo Facchetti]

The start of this chapter of the apcupsd manual in HTML format was pulled from the Network UPS Tools
(NUT) site. It has been an invaluable tool in improving apcupsd, and I consider it the Bible of APC UPS
programming. In the course of using it, I have added information gleaned from apcupsd and information
graciously supplied by APC. Hopefully, the additions made herein can benefit the original author and his
programming project, and maybe some day, the Apcupsd project and the NUT project can join forces.

Description

Here's the information on the elusive APC smart signaling protocol used by their higher end units (Back−UPS
Pro, Smart−UPS, Matrix−UPS, etc). What you see here has been collected from a variety of sources. Some
people analyzed the chatter between PowerChute and their hardware. Others sent various characters to the
UPS and figured out what the results meant.

RS−232 differences

Normal 9 pin serial connections have TxD on 3 and RxD on 2. APC's smart serial ports put TxD on pin 1 and
RxD on pin 2. This means you go nowhere if you use a normal straight through serial cable. In fact, you might
even power down the load if you plug one of those cables in. This is due to the odd routing of pins − DTR and
RTS from the PC usually wind up driving the on/off line. So, when you open the port, they go high and
poof your computer dies.

Originally this evil hack was used to connect the UPS to the PC when this page was first being built. As you
can see, I cheated and neglected the ground (only 2 wires!) and it still worked. This method can be used for
playing around, but for professional systems this is obviously not a viable option.

That hack didn't work out so well (damned cats), so it was retired quite awhile back. The most practical
solution was to go out and BUY the DOS/Win version of PowerChute just for the black (smart) cable. I
recommend doing the same thing if you actually care about this thing working properly. Of course, if you
have one of the newer packages that came with PowerChute, you already have the cable you need.

Diagram for cable hackers

If you are handy with cable creation tools, check out the 940−0024C clone diagram. That's the black "smart"
cable normally provided with APC models sold after 1996. The loopback pins on that diagram are used to
keep PowerChute happy by allowing cable detection. If you use the NUT apcsmart driver, those pins don't
matter.

Many thanks to Steve Draper for providing this scan.

APC UPS management under Linux

Credits 123

http://www.exploits.org/nut/library/apcsmart.html
http://www.exploits.org/nut/library/apcsmart.html
http://www.exploits.org/nut
http://www.exploits.org/nut/library/940-0024C.jpg
http://www.exploits.org/nut/

For additional information on cables, see the cables section of this manual.

The Smart Protocol

Despite the lack of official information from APC, this table has been constructed. It's standard RS−232 serial
communications at 2400 bps/8N1. Don't rush the UPS while transmitting or it may stop talking to you. This
isn't a problem with the normal single character queries, but it really does matter for multi−char things like
"@000". Sprinkle a few calls to usleep() in your code and everything will work a lot better.

The following table describes the single character Code or command that you can send to the UPS, its
meaning, and what sort of response the UPS will provide. Typically, the response shown below is followed by
a newline (\n in C) and a carriage return (\r in C). If you send the UPS a command that it does not recognize
or that is not available on your UPS, it will normally respond by "NA" for not available, otherwise the
response is given in the "Typical results" column.

Code Meaning Typical results

^A Model string SMART−UPS 700

^N

Turn on UPS (send twice, with >
1.5s delay between chars)
Only on 3rd gen SmartUPS and
Black Back−UPS Pros

n/a

^Z Permitted EEPROM Values
A large string (254 chars) that gives the EEPROM permitted values
for your model. For details see below.

A Front panel test Light show + "OK" (and 2s beep)

B Battery voltage Ranges − typical "27.87"

C Internal temperature (degrees C)Ranges − typical "036.0"

D

Runtime calibration − runs until
battery is below 25% (35% for
Matrix)
This updates the 'j' values − only
works at 100% battery charge
Can be aborted with a second
"D"

! when on battery, $ on line

E Automatic self test intervals
Default = 336 (336 hours = 14 days) (336=14 days, 168=7 days,
ON=power on, OFF=never)

F Line frequency, Hz 60.00 (50.0 in Europe)

G Cause of transfer

R = unacceptable utility voltage rate of change,
H = high utility voltage,
L = low utility voltage,
T = line voltage notch or spike,
O = no transfers yet (since turnon),
S = transfer due to serial port U command or activation of UPS test
from front panel,
NA = transfer reason still not available (read again).

K−−K Shutdown with grace period (set
with 'p') − need > 1.5s between

Matrix/3rd gen SmartUPS/Black Back−UPS Pros: "OK", all others:
"*"

APC UPS management under Linux

The Smart Protocol 124

first and second K

L Input line voltage Ranges − typical "118.3" or "228.8" in Europe

M
Maximum line voltage received
since last M query

Ranges − typical "118.9" or "230.1" in Europe

N
Minimum line voltage received
since last N query

Ranges − typical "118.9" or "226.2" in Europe

O Output voltage Ranges − typical "118.3" or "228.8" in Europe

P Power load % Ranges − typical "011.4" depends on what you have plugged in.

Q Status flags Bitmapped, see below

R
Turn dumb
Only on 3rd gen SmartUPS,
SmartUPS v/s, BackUPS Pro

"BYE"

S

Soft shutdown after 'p' delay,
return online when power
returns
Only works when UPS is on
battery

OK

U Simulate power failure !! when switching to battery, then $ when back on line

V Old firmware revision
"GWD" or "IWI" The last character indicates the locale (Domestic,
International).

W
Self test (battery), results stored
in "X"

"OK"

X Results of last self test
"OK" − good battery, "BT" − failed due to insufficient capacity,
"NG" − failed due to overload, "NO" − no results available (no test
performed in last 5 minutes)

Y Enter smart mode "SM"

Z−−Z
Shutdown immediately (no
delay) − need > 1.5s between
first and second Z

N/A

a
Show protocol version.alert
messages.valid commands
(delimited by periods)

"3.!$%+?=#|.^A^N^Z+−789<@ABCDEFGKLMNOPQRSUVWXYZ'abcefgjklmnopqrsuvzy~^?"
− Link−Level.alert−messages.commands

b Firmware revision
"50.9.D" − 50 = SKU (variable length), 9 = firmware revision, D =
country code (D=USA, I=International, A=Asia, J=Japan,
M=Canada)

c UPS local id UPS_IDEN (you can program any 8 characters here)

e Return threshold
% battery charge threshold for return (00=00%, 01=15%, 02=25%,
03=90%)

f Battery level %
Ranges − typical "100.0" when fully charged as should normally be
the case

g
Nominal battery voltage (not
actual voltage − see B)

"012" or "024" or "048".

h
Measure−UPS: ambient
humidity (%)

"nnn.n" − percentage

APC UPS management under Linux

The Smart Protocol 125

i Measure−UPS: dry contacts 10 = contact 1, 20 = 2, 40 = 3, 80 = 4

j
Estimated runtime at current
load (minutes)

"0112:" (note, it is terminated with a colon)

k Alarm delay
0(zero) = 5 second delay after fail, T = 30 second delay, L = alarm
at low battery only, N = no alarm

l Low transfer voltage Default "103" or "208" in Europe

m Manufacturing date Unique within groups of UPSes (production runs)

n Serial number Unique for each UPS

o Nominal Output Voltage
The Nominal Output Voltage when running on batteries. Default
"115" or "230" in Europe.

p Shutdown grace delay, secondsDefault "020" (020/180/300/600)

q Low battery warning, minutes Default "02"

r Wakeup delay (time) − secondsDefault "000" (000/060/180/300)

s Sensitivity
"H" − highest, "M" − medium, "L" − lowest, "A" − autoadjust
(Matrix only)

u Upper transfer voltage Default "132" or "253" in Europe

t
Measure−UPS: ambient
temperature (degrees C)

"nn.nn"

x Last battery change Eight characters. Varies typically dd/mm/yy − 31/12/99

y Copyright notice
"(C) APCC" − only works if firmware letter (from "V") is later than
O

z

Reset the EEPROM to factory
settings (but not ident or batt
replacement date)
Not on SmartUPS v/s or
BackUPS Pro

"CLEAR"

+ Capability cycle
Cycle forward through possible values ("|" from UPS afterward to
confirm change). Do not use this unless you know how to program
your UPS EEPROM or you may damage your UPS.

− Capability cycle
Cycle backward through possible values ("|" from UPS afterward to
confirm change)Do not use this unless you know how to program
your UPS EEPROM or you may damage your UPS.

@nnn
Shutdown (after delay 'p') with
delayed wakeup of nnn tenths of
an hour (after 'r' time)

Matrix/3rd gen UPS: "OK", others "*"

0x7f
(DEL
key)

Abort shutdown − use to abort
@, S, K−−K

"OK"

~ Register #1 See below

' Register #2 See below

0 Battery constant Set to A0 on SmartUPS 1000 with new battery

4 ??? Prints 35 on SmartUPS 1000

5 ??? Prints EF on SmartUPS 1000

APC UPS management under Linux

The Smart Protocol 126

6 ??? Prints F9 on SmartUPS 1000

7
Dip switch positions (if
applicable)

See below

8 Register #3 See below

9 Line quality "FF" acceptable, "00" unacceptable

>
Number of external battery
packs attached

SmartCell models: "nnn" where nnn is how many external packs are
connected
Non−SmartCell units: whatever has been set with >+ and >− by the
user

Matrix UPS (and possibly Symmetra) specific commands

^ Run in bypass mode
If online, "BYP" is received as bypass mode starts
If already in bypass, "INV" is received and UPS goes online
"ERR" received if UPS is unable to transfer

< Number of bad battery packs "nnn" − count of bad packs connected to the UPS

/ Load current "nn.nn" − true RMS load current drawn by UPS

\ Apparent load power "nnn.nn" − output load as percentage of full rated load in VA.

^V
Output voltage selection
(editable)

"A" − automatic according to input tap, "M" − 208 VAC, "I" − 240
VAC

^L Front panel language
"E" − English, "F" − French, "G" − German, "S" − Spanish, "1" "2"
"3" "4" − ?

w Run time conservation
"NO" (disabled) or "02" "05" "08" − minutes of runtime to leave in
battery (UPS shuts down "early")

Dip switch info

Bit Switch Option when bit=1

0 4 Low battery alarm changed from 2 to 5 mins. Autostartup disabled on SU370ci and 400

1 3 Audible alarm delayed 30 seconds

2 2 Output transfer set to 115 VAC (from 120 VAC) or to 240 VAC (from 230 VAC)

3 1 UPS desensitized − input voltage range expanded

4−7 − Unused at this time

Status bits

This is probably the most important register of the UPS, which indicates the overall UPS status. Some
common things you'll see:

08 = On line, battery OK•

APC UPS management under Linux

Dip switch info 127

10 = On battery, battery OK•
50 = On battery, battery low•
SM = Status bit is still not available (retry reading)•

Bit Hex Bit Meaning

0 0x01
1 = Runtime calibration occurring
Not reported by Smart UPS v/s and BackUPS Pro

1 0x02
1 = SmartTrim
Not reported by 1st and 2nd generation SmartUPS models

2 0x04 1 = SmartBoost

3 0x08 1 = On line (this is the normal condition)

4 0x10 1 = On battery

5 0x20 1 = Overloaded output

6 0x40 1 = Battery low

7 0x80 1 = Replace battery

Alert messages

These single character messages are sent by the UPS any time there is an Alert condition. All other responses
indicated above are sent by the UPS only in response to a query or action command.

Character Description

!
Line Fail − sent when the UPS goes on−battery, repeated every 30 seconds until low battery
condition reached. Sometimes occurs more than once in the first 30 seconds.

$ Return from line fail − UPS back on line power, only sent if a ! has been sent.

%
Low battery − Sent to indicate low battery, but not on SmartUPS v/s or BackUPS Pro
models

+
Return from low battery − Sent when the battery has been recharged to some level only if a
% has been sent previously

APC UPS management under Linux

Alert messages 128

?
Abnormal condition − sent for conditions such as "shutdown due to overload" or "shutdown
due to low battery capacity". Also occurs within 10 minutes of turnon.

=
Return from abnormal condition − Sent when the UPS returns from an abnormal condition
where ? was sent, but not a turn−on. Not implemented on SmartUPS v/s or BackUPS Pro
models.

*
About to turn off − Sent when the UPS is about to switch off the load. No commands are
processed after this character is sent. Not implemented on SmartUPS v/s, BackUPS Pro, or
3rd generation SmartUPS models.

#
Replace battery − Sent when the UPS detects that the battery needs to be replaced. Sent
every 5 hours until a new battery test is run or the UPS is shut off. Not implemented on
SmartUPS v/s or BackUPS Pro models.

&

Check alarm register for fault (Measure−UPS) − sent to signal that temp or humidity out of
set limits. Also sent when one of the contact closures changes states. Sent every 2 minutes,
stops when the alarm conditions are reset. Only sent for alarms enabled with I. Cause of
alarm may be determined with J. Not on SmartUPS v/s or BackUPS Pro.

|
Variable change in EEPROM − Sent whenever any EEPROM variable is changed. Only
supported on Matrix UPS and 3rd generation SmartUPS models.

Register 1

All bits are valid on the Matrix UPS. SmartUPS models only support bits 6 and 7. Other models do not
respond.

Bit Hex Bit Meaning

0 0x01 In wakeup mode (typically lasts < 2s)

1 0x02 In bypass mode due to internal fault − see register 2 or 3

2 0x04 Going to bypass mode due to command

3 0x08 In bypass mode due to command

4 0x10 Returning from bypass mode

5 0x20 In bypass mode due to manual bypass control

APC UPS management under Linux

Register 1 129

6 0x40 Ready to power load on user command

7 0x80 Ready to power load on user command or return of line power

Register 2

Matrix UPS models report bits 0−5. SmartUPS models only support bits 4 and 6. SmartUPS v/s and BackUPS
Pro report bits 4, 6, 7. Unused bits are set to 0. Other models do not respond.

Bit Meaning

0 Fan failure in electronics, UPS in bypass

1 Fan failure in isolation unit

2 Bypass supply failure

3 Output voltage select failure, UPS in bypass

4 DC imbalance, UPS in bypass

5 Command sent to stop bypass with no battery connected − UPS still in bypass

6 Relay fault in SmartTrim or SmartBoost

7 Bad output voltage

Register 3

All bits are valid on the Matrix UPS and 3rd generation SmartUPS models. SmartUPS v/s and BackUPS Pro
models report bits 0−5. All others report 0−4. State change of bits 1,2,5,6,7 are reported asynchronously with
? and = messages.

Bit Meaning

0 Output unpowered due to shutdown by low battery

1 Unable to transfer to battery due to overload

2 Main relay malfunction − UPS turned off

APC UPS management under Linux

Register 2 130

3 In sleep mode from @ (maybe others)

4 In shutdown mode from S

5 Battery charger failure

6 Bypass relay malfunction

7 Normal operating temperature exceeded

Interpretation of the Old Firmware Revision

The Old Firmware Revision is obtained with the "V" command, which gives a typical response such as
"GWD" or "IWI", and can be interpreted as follows:

 Old Firmware revision and model ID String for SmartUPS MatrixUPS

 This is a three character string XYZ

 where X == Smart−UPS or Matrix−UPS ID Code.
 range 0−9 and A−P
 1 == unknown
 0 == Matrix 3000
 5 == Matrix 5000
 the rest are Smart−UPS and Smart−UPS−XL
 2 == 250 3 == 400 4 == 400
 6 == 600 7 == 900 8 == 1250
 9 == 2000 A == 1400 B == 1000
 C == 650 D == 420 E == 280
 F == 450 G == 700 H == 700XL
 I == 1000 J == 1000XL K == 1400
 L == 1400XL M == 2200 N == 2200XL
 O == 3000 P == 5000

 where Y == Possible Level of Smart Features, unknown???
 G == Stand Alone
 T == Stand Alone
 V == ???
 W == Rack Mount

 where Z == National Model Use Only Codes
 D == Domestic 115 Volts
 I == International 230 Volts
 A == Asia ?? 100 Volts
 J == Japan ?? 100 Volts

Interpretation of the New Firmware Revision

The New Firmware Revision is obtained with the "b" command, which give a typical response such as
"50.9.D" or "60.11.I", and can be interpreted as follows:

 New Firmware revison and model ID String in NN.M.L is the format

APC UPS management under Linux

Interpretation of the Old Firmware Revision 131

 where NN == UPS ID Code.
 12 == Back−UPS Pro 650
 13 == Back−UPS Pro 1000
 52 == Smart−UPS 700
 60 == SmartUPS 1000
 72 == Smart−UPS 1400

 where NN now Nn has possible meanings.
 N == Class of UPS
 1n == Back−UPS Pro
 5n == Smart−UPS
 7n == Smart−UPS NET

 n == Level of intelligence
 N1 == Simple Signal, if detectable WAG(*)
 N2 == Full Set of Smart Signals
 N3 == Micro Subset of Smart Signals

 where M == Possible Level of Smart Features, unknown???
 1 == Stand Alone
 8 == Rack Mount
 9 == Rack Mount

 where L == National Model Use Only Codes
 D == Domestic 115 Volts
 I == International 230 Volts
 A == Asia ?? 100 Volts
 J == Japan ?? 100 Volts
 M == North America 208 Volts (Servers)

EEPROM Values

Upon sending a ^Z, your UPS will probably spit back approximately 254 characters something like the
following (truncated here for the example):

#uD43132135138129uM43229234239224uA43110112114108

It looks bizarre and ugly, but is easily parsed. The # is some kind of marker/ident character. Skip it. The rest
fits this form:

Command character − use this to select the value•
Locale − use 'b' to find out what yours is (the last character), '4' applies to all•
Number of choices − '4' means there are 4 possibilities coming up•
Choice length − '3' means they are all 3 chars long•

Then it's followed by the choices, and it starts over.

Matrix−UPS models have ## between each grouping for some reason.

Here is an example broken out to be more readable:

 CMD DFO RSP FSZ FVL
 u D 4 3 127 130 133 136
 u M 4 3 229 234 239 224
 u A 4 3 108 110 112 114

APC UPS management under Linux

EEPROM Values 132

 u I 4 3 253 257 261 265
 l D 4 3 106 103 100 097
 l M 4 3 177 172 168 182
 l A 4 3 092 090 088 086
 l I 4 3 208 204 200 196
 e 4 4 2 00 15 50 90
 o D 1 3 115
 o J 1 3 100
 o I 1 3 230 240 220 225
 o M 1 3 208
 s 4 4 1 H M L L
 q 4 4 2 02 05 07 10
 p 4 4 3 020 180 300 600
 k 4 4 1 0 T L N
 r 4 4 3 000 060 180 300
 E 4 4 3 336 168 ON OFF

 CMD == UPSlink Command.
 u = upper transfer voltage
 l = lower transfer voltage
 e = return threshold
 o = output voltage
 s = sensitivity
 p = shutdown grace delay
 q = low battery warning
 k = alarm delay
 r = wakeup delay
 E = self test interval

 DFO == (4)−all−countries (D)omestic (I)nternational (A)sia (J)apan
 (M) North America − servers.
 RSP == Total number possible answers returned by a given CMD.
 FSZ == Max. number of field positions to be filled.
 FVL == Values that are returned and legal.

Programming the UPS EEPROM

There are at this time a maximum of 12 different values that can be programmed into the UPS EEPROM.
They are:

Item Command Meaning

1. c The UPS Id or name

2. x The last date the batteries were replaced

3. u The Upper Transfer Voltage

4. l The Lower Transfer Voltage

5. e The Return Battery Charge Percentage

APC UPS management under Linux

Programming the UPS EEPROM 133

6. o The Output Voltage when on Batteries

7. s The Sensitivity to Line Quality

8. p The Shutdown Grace Delay

9. q The Low Battery Warning Delay

10. k The Alarm Delay

11. r The Wakeup Delay

12. E The Automatic Self Test Interval

The first two cases (Ident and Batt date) are somewhat special in that you tell the UPS you want to change the
value, then you supply 8 characters that are saved in the EEPROM. The last ten item are programmed by
telling the UPS that you want it to cycle to the next permitted value.

In each case, you indicate to the UPS that you want to change the EEPROM by first sending the appropriate
query command (e.g. "c" for the UPS ID or "u" for the Upper Transfer voltage. This command is then
immediately followed by the cycle EEPROM command or "−". In the case of the UPS Id or the battery date,
you follow the cycle command by the eight characters that you want to put in the EEPROM. In the case of the
other ten items, there is nothing more to enter.

The UPS will respond by "OK" and approximately 5 seconds later by a vertical bar (|) to indicate that the
EEPROM was changed.

Acknowledgements
The apcupsd has a rather long and tormented history. Many thanks to the guys that, with time, contributed to
the general public knowledge.

Pavel Korensky <pavelk at dator3.anet.cz>,
Andre M. Hedrick <hedrick at suse.de>,
Christopher J. Reimer <reimer at doe.carleton.ca>,
Kevin D. Smolkowski <kevins at trigger.oslc.org>,
Werner Panocha <wpanocha at t−online.de>,
Steven Freed,
Russell Kroll.

26 November 1999

additions by:

Kern Sibbald <apcupsd−devel at apcupsd.org> 21 December 1999

APC UPS management under Linux

Acknowledgements 134

http://www.exploits.org/~rkroll/contact.html
http://www.sibbald.com

additional credits by:

Riccardo Facchetti

08 February 2000

APC UPS management under Linux

Acknowledgements 135

Apcupsd's Support for USB UPSes

General

Apcupsd version 3.9.8 or later (development version to be released as 3.10.0) provides direct support for USB
UPSes on Linux systems only. To run apcupsd with a USB UPS, you need the following things:

A USB UPS (for example APC's BackUPS 350 CS) or an IOGear Serial to USB converter.•
Apcupsd version 3.9.8 or higher•
Version 2.4.5 or later of the Linux kernel•
A a pre−built kernel containing the USB patches such as is available as an update for RedHat 7.1, or
standard in RedHat 7.2 and later. Other Linux vendors provide USB ready kernels as well.

•

Or Alan Cox's patch to your kernel. If you have kernel 2.4.5, you must have patch ac12 or later. For
later versions of the kernel, any ac patch should do. Please note that USB enabled kernels are
becoming more and more common so you may not need to build your own so this option is no longer
recommended (Feb 2003).

•

At the current time (August 2002), apcupsd supports USB on Linux systems only. This is because there is no
standard USB programming interface and USB on the majority of machines other than Windows and Linux is
currently under development and not stable.

Indirect USB Support −− Connecting a Serial port UPS to a USB
port

By using a special adaptor, you can connect your serial UPS to a USB port (note, this works only if you do
NOT have a USB enabled UPS). If you would like to free up your serial port and connect your existing serial
port UPS to a USB port, it is possible if you have one of the later kernels. You simply get a serial to USB
adapter that is supported by the kernel, plug it in and make one minor change to your apcupsd.conf file and
away you go. Thanks to Joe Acosta for this out to me.

The device that Joe and I are using is IOgear guc232a USB 2 serial adapter. There may be other adapters that
work equally well. If you know of one, please let us know.

At my site, running RedHat 7.1 with kernel 2.4.9−12, I simply changed my /etc/apcupsd/apcupsd.conf
configuration line to be:

DEVICE /dev/ttyUSB0

Depending on whether or not you have hotplug working, you may need to explicitly load the kernel modules
usbserial and

pl2303. In my case, this was not necessary.

Direct support for USB UPSes

The rest of this chapter concerns making apcupsd work by connecting your USB enabled UPS directly to a
USB port on your Linux machine.

APC UPS management under Linux

Apcupsd's Support for USB UPSes 136

Please note if you have cable number 940−0128A, your UPS will be connected to your serial port as a
standard serial UPS and the rest of this chapter will not apply to your case.

Getting and Building a Kernel

Please note that a number of Linux packagers are including Alan Cox's patches in their standard releases. This
is true for RedHat 7.1, 7.2, and 7.3 if you have the latest kernel updates. As a consequence before getting and
building your own kernel, if you are already running a 2.4.5 kernel or later, please check whether or not it
already has the necessary USB updates. This can be done by creating the device files and running the USB
test program as described below.

For some very brief instructions on how to get and build your kernel, see the Kernel Configuration section of
this manual. More information on configuring a kernel can be found in the kernel−HOWTO do.

Making the Device Files

Once you have your kernel installed and working, you need to define the hiddev device files if they are not
already present on your system. This can be done by invoking the script in
<apcupsd−src>/examples/make−hiddev, which does the following:

#!/bin/sh
mkdir −p /dev/usb/hid
mknod /dev/usb/hid/hiddev0 c 180 96
mknod /dev/usb/hid/hiddev1 c 180 97
mknod /dev/usb/hid/hiddev2 c 180 98
mknod /dev/usb/hid/hiddev3 c 180 99
mknod /dev/usb/hid/hiddev4 c 180 100
mknod /dev/usb/hid/hiddev5 c 180 101
mknod /dev/usb/hid/hiddev6 c 180 102
mknod /dev/usb/hid/hiddev7 c 180 103
mknod /dev/usb/hid/hiddev8 c 180 104
mknod /dev/usb/hid/hiddev9 c 180 105
mknod /dev/usb/hid/hiddev10 c 180 106
mknod /dev/usb/hid/hiddev11 c 180 107
mknod /dev/usb/hid/hiddev12 c 180 108
mknod /dev/usb/hid/hiddev13 c 180 109
mknod /dev/usb/hid/hiddev14 c 180 110
mknod /dev/usb/hid/hiddev15 c 180 111

Note, as of RedHat 8.0, the hiddev devices are defined when the OS is installed, except they are defined as
/dev/usb/hiddev0 − 15. Thus you will either need to run the above script and stick with our scheme, or you
can choose to use the standard RedHat definitions. If you go with the Red Hat locations, you will probanly
have to change the DEVICE entry in your apcupsd.conf file by hand.

Installing the HIDDEV Header File

If you have built the kernel, you must put a copy of hiddev.h into /usr/include. Use the following:

cd /usr/src<kernel−source−directory>/
cp include/linux/hiddev.h /usr/include/linux/

This step should not be necessary if you have a preconfigured kernel as long as you have loaded the
kernel−headers rpm.

APC UPS management under Linux

Getting and Building a Kernel 137

Building the Test Program

Next, we recommend that you build and run the hid−ups test program. To build it enter:

cd <apcupsd−src>/examples
make hid−ups

There should be no errors.

Now assuming that everything has gone well to this point and that you have connected your USB UPS, enter:

./hid−ups

It should print a sample report of the information that it has obtained from your UPS. CAUTION! Do not run
two copies of this program at the same time, or your kernel will freeze.

The report that is printed should look very similar to the report in <src>/hid−ups.rpt.

If the program reports that the device was not found ensure that all the appropriate modules are loaded as
described in the Kernel Configuration section of this manual, then unplug your UPS and plug it back in. This
should permit the kernel to recognize the UPS.

If ./hid−ups tells you "No permission, try this as root", you know what to try. If it says "Couldn't find USB
UPS device, check your /dev.", then it is very unlikely that apcupsd will work. You probably need to run the
script "make−hiddev" before continuing.

Building and Installing apcupsd

If you have gotten this far successfully, the last step should go fairly easily. You need a beta version 3.9.4 or
later of apcupsd. We recommend version 3.10.5 or later. Follow the instructions in the Installation Chapter of
this manual, being sure to include the following options (in addition to any others you need) on the
./configure line:

 ./configure \
 −−with−serial−dev=/dev/usb/hid/hiddev[0−15] \
 −−with−upstype=usb \
 −−with−upscable=usb \
 −−enable−pthreads \
 −−enable−usb

Please note, it is IMPORTANT to include the −−with−serial−dev=/dev/usb/hid/hiddev[0−15] \ line. This
will cause the apcupsd.conf file to contain:

DEVICE /dev/usb/hid/hiddev[0−15]

If you are on a Red Hat system and sticking to the Red Hat naming scheme, however, the −−with0serial−dev
option needs to be /dev/usb/hiddev[0−15]. The [0−15] is not a typo, but should be entered exactly as shown.
This is because the UPS can change device numbers while it is running. Every time there is a blip or
slowdown on the USB line, the kernel will invalidate the UPS connection, then a few moments later, it will
reconnect but with a different device number. Not very Unix like, but that is what happens. This bizarre
syntax allows apcupsd to try a range of devices until it finds or re−finds the UPS device.

APC UPS management under Linux

Building the Test Program 138

USB Specific Information

The UPS has an internal set of timers and remaining capacity counters, which it uses to determine when to
shutdown. These are in addition to the apcupsd counters BATTERYLEVEL and MINUTES. As a
consequence, apcupsd will shutdown on the first limit that triggers (either an apcupsd limit, or a UPS limit).

The UPS internal counter equivalent to BATTERYLEVEL can be found in the hid−ups report as
RemainingCapacityLimit, which is typically factory set to 10 percent. In addition, the Low Battery signal is
normally given by the UPS when less than 2 minutes of run time remain.

If you are technically inclined, you may want to look at the /proc file system to see what devices are attached
to your USB ports. The most interesting information will be found by listing the contents of
/proc/bus/usb/devices. This information is updated by the kernel whenever a device is plugged in or
unplugged, irrespective of whether apcupsd is running or not. To interpret the codes in this file, please see
http://www.linuxhq.com/kernel/v2.4/doc/usb/proc_usb_info.txt.html

As a reference, on my system, I have the following entry for my Back−UPS 350 direct connected USB
device:

T: Bus=01 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 2 Spd=1.5 MxCh= 0
D: Ver= 1.10 Cls=00(>ifc) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
P: Vendor=051d ProdID=0002 Rev= 1.00
S: Manufacturer=American Power Conversion
S: Product=Back−UPS 350 FW: 5.2.I USB FW: c1
S: SerialNumber=BB0115017954
C:* #Ifs= 1 Cfg#= 1 Atr=a0 MxPwr= 30mA
I: If#= 0 Alt= 0 #EPs= 1 Cls=03(HID) Sub=00 Prot=00 Driver=hid
E: Ad=81(I) Atr=03(Int.) MxPS= 8 Ivl= 10ms

And for my IOgear that runs my serial SmartUPS 1000 (plugged into a USB port):

T: Bus=01 Lev=01 Prnt=01 Port=01 Cnt=02 Dev#= 4 Spd=12 MxCh= 0
D: Ver= 1.10 Cls=00(>ifc) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
P: Vendor=0557 ProdID=2008 Rev= 0.01
C:* #Ifs= 1 Cfg#= 1 Atr=a0 MxPwr=100mA
I: If#= 0 Alt= 0 #EPs= 3 Cls=ff(vend.) Sub=00 Prot=00 Driver=serial
E: Ad=81(I) Atr=03(Int.) MxPS= 10 Ivl= 1ms
E: Ad=02(O) Atr=02(Bulk) MxPS= 64 Ivl= 0ms
E: Ad=83(I) Atr=02(Bulk) MxPS= 64 Ivl= 0ms

Note that the IOgear device is using the serial driver (the I: line) while the Back−UPS 350 is using the hid
driver.

Here is an example of a cat /proc/modules on my machine (RedHat 7.1 − kernel 2.4.9−12). Note, I am
running both an IOGear serial USB device and a standard USB device.

nfs 77312 9 (autoclean)
es1371 26816 0 (autoclean)
ac97_codec 9376 0 (autoclean) [es1371]
gameport 1856 0 (autoclean) [es1371]
soundcore 4144 4 (autoclean) [es1371]
nfsd 69920 4 (autoclean)
lockd 51664 1 (autoclean) [nfs nfsd]
sunrpc 62832 1 (autoclean) [nfs nfsd lockd]
parport_pc 14736 1 (autoclean)

APC UPS management under Linux

USB Specific Information 139

http://www.linuxhq.com/kernel/v2.4/doc/usb/proc_usb_info.txt.html

lp 6176 0 (autoclean)
parport 24832 1 (autoclean) [parport_pc lp]
autofs 10784 1 (autoclean)
nls_iso8859−1 2880 1 (autoclean)
smbfs 35344 1 (autoclean)
3c59x 26336 1 (autoclean)
ipchains 36704 0
pl2303 7648 1
hid 18576 1
usbserial 18288 1 [pl2303]
input 3648 0 [hid]
usb−uhci 21568 0 (unused)
usbcore 50784 1 [pl2303 hid usbserial usb−uhci]

I am not a kernel expert, but for a standard USB connection, I believe that you need the following modules
loaded:

usbcore
input
hid

For the IOGear serial USB connection, you need:

usbcore
usbserial
pl2303

Known Problems

Lock File not Released if UPS Disconnected

If either you disconnect the UPS or it disconnects because of some electrical problem, it will most certainly
reconnect with a different device number. Apcupsd will detect this and reconnect properly. However,
apcupsd does not release the old device (serial port) lock file and create a new one. This is not too serious.

Reinitialization If You Connect a Different UPS

If you disconnect the UPS and plug in a different one or a different model, it will continue to function
properly, but in apcupsd version 3.9.4 the static data such as the UPS name, model, serial number, and
firmware will not be updated. Versions 3.9.6 and greater detect the change and do a complete reinitialization
of the UPS and so do not have this problem.

Power Off (killpower) of UPS Does Not Work

Currently (as of 3.10.5) the code to power off the UPS does not function properly. It does not look like a
solution to this problem will be available until 2.5 of the kernel is released. In the mean time, the UPS will
normally power itself down one to two minutes after the machine is shutdown.

Apcupsd Cannot Reconnect After a Reboot

If apcupsd does not connect to the USB port when you reboot, it is probably the appropriate kernel modules
are not getting loaded correctly.

APC UPS management under Linux

Known Problems 140

You can check this by bringing up your system, fiddling around until you get apcupsd to work with the UPS,
then do:

cat /proc/modules

and save the output some place. Then reboot your computer and before you do anything else, do the cat
/proc/modules again. Most likely you will find some of the usb modules are missing in the second listing.

There are two solutions:

Ensure that you have the hotplug program loaded. It should fix the problem. This is a bit of magic, so
we are not exactly sure how it works. The rpm I (Kern) have loaded is:

•

hotplug−2001_02_14−15

You might want to read the man page on hotplug, and it might be necessary to:

cp /etc/hotplug/usb.rc /etc/init.d/hotplug

to get it fully working.

You can explicitly force the appropriate usb modules to be loaded by adding:•

/sbin/modprobe <missing−module−name>

in the /etc/rc.d/init.d/apcupsd script just after the start) case (at about line 17). This will force the
modules to be loaded before apcupsd is invoked.

Normally, the modules you will need loaded are the following:
usbcore
hid
input

Disclaimer

First, please rememeber this is beta software. It is not yet complete and there are sure to be some problems.
We would appreciate hearing about your experiences.

APC UPS management under Linux

Disclaimer 141

Apcupsd's Support for SNMP UPSes

General

Apcupsd version 3.10.0 or later provides direct support for SNMP UPSes. To run apcupsd with an SNMP
UPS, you need the following things:

An SNMP UPS, for example a Web/SNMP card installed into the SmartSlot.•
Apcupsd version 3.10.0 or higher•
Net−SNMP library (previously known as ucd−snmp) installed•

Connecting an SNMP UPS

The Simple Network Management Protocol provides an interface to connect to remote devices through the
network. apcupsd is now capable of using the SNMP interface of an SNMP−enabled UPS to communicate
with an UPS. Currently apcupsd supports only APC's PowerNet MIB. To enable the SNMP support it is
enough to configure the correct device in your apcupsd.conf configuration file. The directive needed for this
configuration is:

 DEVICE 192.168.100.2:161:APC:private

where the directive is made by four parts:

IP address of the remote UPS•
Remote SNMP port•
Kind of remote SNMP agent, currently can only be "APC" for APC's powernet MIB•
The read−write community string, usually it is "private" for read−write access.•

Building and Installing apcupsd

Follow the instructions in the Installation Chapter of this manual, being sure to include the following options
(in addition to any others you need) on the ./configure line:

 ./configure \
 −−with−serial−dev= \
 −−with−upstype=snmp \
 −−with−upscable=smart \
 −−enable−pthreads \
 −−enable−snmp

SNMP Specific Information

The SNMP connection gives less information compared to a serial smart cable. This is not a problem as the
most useful information is given, together with a number of secondary parameters that are informative enough
to run safely your UPS.

APC UPS management under Linux

Apcupsd's Support for SNMP UPSes 142

http://www.net-snmp.org/

Known Problems

Power Off (killpower) of SNMP UPS needs special handling

Currently (as of 3.10.0) the code to power off the UPS needs special configuration. The killpower command
for SNMP UPSes can not be issued during shutdown as typically at some time during shutdown operations the
network stack is stopped. To overcome this problem it is needed to modify the /etc/rc.d/apcupsd system
control script to tell apcupsd to issue the power down command (killpower) to the UPS immediately before
apcupsd initiates the system shutdown. For this reason it is paramount to set your UPS grace time to a value
greater than 120 seconds to allow for clean shutdown operations before the UPS removes the power from its
plugs. To enable correct shutdown operation during powerdown do the following:

Connect to your Web/SNMP card using your favorite web browser, go to the UPS configuration menu
and change the "Shutdown Delay" parameter to 180 seconds or more, depending on how much time
your system shutdown requires to umount all the filesystems.

•

Change /etc/rc.d/apcupsd script adding the '−−kill−on−powerfail' to the apcupsd invocation.•
Restart your apcupsd•

With this setup your UPS operations should be safe.

APC UPS management under Linux

Known Problems 143

Configuring a Kernel for USB Support
Note, this chapter is somewhat out of date as the kernel has evolved quite a bit in the last year and a half. In
fact, you should not have to venture into building your own kernel unless your OS provider is seriously
behind the times. With that said, there is still much valuable information here that you can use if you must
build your own system.

General

Apcupsd version 3.10.5 provides support for USB UPSes on Linux systems. However at this time (February
2003) Linux kernels do not yet support the HIDDEV device that is used by apcupsd. If you are running a
release such as RedHat 7.3 or 8.0, the kernels generally come preconfigured with all the necessary patches. If
you are not so fortunate but you have a kernel version 2.4.5 or later and you apply the appropriate Alan Cox
patch, you will be able to enable USB support in apcupsd.

For kernel 2.4.5, you need patch ac12 or later. For later versions of the kernel, any ac patch should work.
Please be sure to obtain either the latest kernel or the one shipped with your system. We use version 2.4.5 for
illustration purposes and do not recommend that you downgrade to it.

Downloading

New kernel versions are released and an amazing speed, so by the time you read this, the current stable kernel
will no longer be 2.4.5 and you should obtain the version that corresponds to current usage or to what you
already have on your system. You can obtain the 2.4 kernels from:
http://www.kernel.org/pub/linux/kernel/v2.4/.

You can obtain the Allen Cox patches from: http://www.kernel.org/pub/linux/kernel/people/alan/2.4/

Alternatively, you can obtain the latest kernel source from your favorite vendor. For example, for RedHat, you
would obtain: kernel−source−2.4.x.rpm and install it with rpm, then skip the first two steps in the next
section.

Building the Kernel

I provide here only a very brief explanation of the steps necessary to build your kernel. If you have a later
kernel such as RedHat 7.3 (kernel 2.4.18−5), you don't need to rebuild it. If you want to anyway, you can
install the kernel−source rpm, cd to the appropriate directory (usually /usr/src/linux−2.4), then skip
immediately to step 11 below.

 1. Download kernel from:
 http://www.kernel.org/pub/linux/kernel/v2.4/
 (I assume you get linux−2.4.5.tar.gz and that
 you put it into /usr/src)

 2. Download Alan Cox patch from:
 http://www.kernel.org/pub/linux/kernel/people/alan/2.4/
 (I assume you get patch−2.4.5−ac12.gz and that you
 put it into /usr/src)

 3. su root

APC UPS management under Linux

Configuring a Kernel for USB Support 144

http://www.kernel.org/pub/linux/kernel/v2.4/
http://www.kernel.org/pub/linux/kernel/people/alan/2.4/

 4. cd /usr/src

 5. Ensure that the directory linux does not exist,
 or if it is linked, remove the link or change the
 name.

 6. Unpack the kernel with:

 tar xvfz linux−2.4.5.tar.gz

 7. Unpack the patch with:

 gunzip patch−2.4.5−ac12.gz

 8. Move the kernel source into a different directory:

 mv linux linux−2.4.5

 or

 mv linux linux−2.4.5−ac12

 9. cd linux−2.4.5

10. Apply the patch with:

 patch −p1 cat /proc/modules

 If not, load them by hand.

 modprobe uhci
 modprobe hid

Build Problems

If you start with the RedHat kernel−source package as I did and use one of their config files in configs as I
did, you are very likely to get a number of undefined symbols when making or installing the modules. In this
case, I found that I can simply edit .config with my favorite editor, comment out modules that don't build
(knowing which ones is not always obvious from the names), then simply make modules and make
modules_install until all the problems go away. Once the module build and install is correct, I recommend
doing make bzImage and make install again.

Disclaimer

I'm not at all a kernel expert so you are pretty much on your own here. Any corrections to these instructions
would be welcome.

APC UPS management under Linux

Build Problems 145

The Windows Version of Apcupsd

General

The Windows version of apcupsd has been tested on Win95, Win98, WinMe, WinNT, WinXP, and Win2000
systems. This version of apcupsd has been built to run under the CYGWIN environment, which provides
many of the features of Unix on Windows systems. It also permitted a rapid port with very few source code
changes, which means that the Windows version is for the most part running code that has long proved stable
on Unix systems. Even though the Win32 version of apcupsd is a port that relies on many Unix features, it is
just the same a true Windows program. When running, it is perfectly integrated with Windows and displays its
icon in the system icon tray, and provides a system tray menu to obtain additional information on how
apcupsd is running (status and events dialogue boxes). If so desired, it can also be stopped by using the
system tray menu, though this should normally never be necessary.

Once installed apcupsd normally runs as a system service. This means that it is immediately started by the
operating system when the system is booted, and runs in the background even if there is no user logged into
the system.

Installation

Normally, you will install the Windows version of Apcupsd from the binaries. This install is somewhat Unix
like since you do many parts of the installation by hand. To install the binaries, you need WinZip.

Simply double click on the winapcupsd−3.8.5.tar.gz icon. The actual name of the icon will vary
from one release version to another.

•

When Zip says that it has one file and asks if it should unpack it into a temporary file, respond with
Yes.

•

APC UPS management under Linux

The Windows Version of Apcupsd 146

Ensure that you extract all files and that the extraction will go into C:\•

If you wish to install the package elsewhere, please note that you will need to proceed with a manual
installation, which is not particularly easy as you must rebuild the source and change the configuration file as
well.

This installation assumes that you do not have CYGWIN installed on your computer. If you do, and you use
mount points, you may need to do a special manual installation.

Once you have unzipped the binaries, open a window pointing to the binary installation folder (normally
c:\apcupsd). This folder should contain folders with the name bin, etc, examples, and manual. If and when
you no longer need them, the examples and manual sub−folders of the c:\apcupsd directory may be removed.

Continuing the installation process:

Open the directory c:\apcupsd\etc\apcupsd in the Windows Explorer by Clicking on the apcupsd
folder then on the etc folder, then on the apcupsd folder. Finally double click on the file
apcupsd.conf and edit it to contain the values appropriate for your site. In most cases, no changes will
be needed, but if you are not using COM1 for your serial port, you will need to set the DEVICE
configuration directive to the correct serial port. Note, if you are using WinNT or Win2000, the
operating system may probe the port attempting to attach a serial mouse. This will cause apcupsd to
be unable to communicate with the serial port. If this happens, or out of precaution, you can edit the
c:\boot.ini file. Find the line that looks something like the following:

•

APC UPS management under Linux

The Windows Version of Apcupsd 147

multi(0)disk(0)rdisk(0)partition(1)\WINNT="Windows NT Workstation Version 4.00"

and add the following to the end of the line: /NoSerialMice:COM1 (or COM2 depending on what you
want to use). The new line should look similar to:

multi(0)disk(0)rdisk(0)partition(1)\WINNT="Windows NT Workstation Version 4.00"
/NoSerialMice:COM1

where the only thing you have changed is to append to the end of the line. This addition will prevent
the operating system from interferring with apcupsd

Then return to c:\apcupsd and open on the bin folder so that you see its contents.•

To do the final step of installation, double click on the setup.bat program. This script will setup the
appropriate mount points for the directories that apcupsd uses, it will install apcupsd in the system
registry, and on Windows 98, it will start apcupsd running.

•

If everything went well, you will get something similar to the following output in a DOS shell
window:

What is important to verify in the DOS window is that the root directory \ is mounted on device c:\.

The DOS window will be followed immediately by a Windows dialogue box as follows:

APC UPS management under Linux

The Windows Version of Apcupsd 148

On Windows 98, to actually start the service, either reboot the machine, which is not necessary, or
open a DOS shell window, and type the following commands:

•

 cd c:\apcupsd\bin
 apcupsd /service

Alternatively, you can go to the c:\apcupsd\bin folder with the Explorer and double click on the Start
icon.

On Windows NT, to start the service, either reboot the machine, which is not necessary, or go to the
Control Panel, open the Services folder and start the Apcupsd daemon program by selecting the
Apcupsd UPS Server and then clicking on the Start button as shown below:

•

If the Services dialog reports a problem, it is normally because your DEVICE statement does not contain the
correct serial port name. You probably should also click on the Startup... button to ensure that the correct
defaults are set. The dialogue box that appears should have Startup Type set to Automatic and Logon
should be set to System Account with Allow Service to Interact with Desktop checked. If these values are
not set correctly by default, please change them otherwise apcupsd will not work.

For WinXP systems (and probably Win2K), the dialogs are a bit different from those shown here for WinNT,
but he concept is the same. You get to the Services dialog by clicking on: Control Panel −> Administrative

APC UPS management under Linux

The Windows Version of Apcupsd 149

Tools −> Component Services. The apcupsd service should appear in the right hand window when you click
on Services (Local) in the left hand menu window.

That should complete the installation process. When the system tray icon turns from a battery into a plug
, right click on it and a menu will appear. Select the Events item, and the Events dialogue box should

appear. There should be no error messages. By right clicking again on the system tray plug and selecting the
Status item, you can verify that all the values for your UPS are correct.

When the UPS switches to the battery, the battery icon will reappear in the system tray. While the UPS is
online, if the battery is not at least 99% charged, the plug icon will become a plug with a lightning bolt in the
middle to indicate that the battery is charging.

Installation Directory

The Win32 version of apcupsd must reside in the c:\apcupsd\ directory, and there must be a c:\tmp directory
on your machine. The installation will do this automatically, and we recommend that you do not attempt to
place apcupsd in another directory. If you do so, you are on your own, and you will need to do a rebuild of
the source.

Testing

It is hard to over emphasize the need to do a full testing of your installation of apcupsd as there are a number
of reasons why it may not behave properly in a real power failure situation.

Please read the Testing chapter of this document for general instructions on testing the Win32 version.
However, on Win32 systems, there is no Unix system log file, so if something goes wrong, look in the file
c:\apcupsd\etc\apcupsd\apcupsd.events where apcupsd normally logs its events, and you will generally
find more detailed information on why the program is not working. The most common cause of problems is
either improper configuration of the cable type, or an incorrect address for the serial port.

Upgrading

On Win98 and Win95 systems, to upgrade to a new release, simply stop apcupsd by using the tray icon and
selecting the Close Apcupsd menu item, or by double clicking on the Stop icon located in the c:\apcupsd\bin
directory, then apply the upgrade and restart apcupsd.

On WinNT systems (and Win2000 systems), you may stop apcupsd as indicated abover or alternatively you
may stop apcupsd by using the Services item in the Control Panel. In addition, at least on my system, there
seems to be a WinNT bug that causes the system to prevent apcupsd.exe from being overwritten even though
the file is no longer being used. This is manifested by an error message when attempting load a new version
and overwrite the old apcupsd.exe (the extract part of WinZip as described above). To circumvent this
problem (if it happens to you), after shutting down the running version of apcupsd, through the Services
dialogue in the Control Panel, first click on the Stop button:

APC UPS management under Linux

Installation Directory 150

then click on the Startup ... button, and in the Startup dialogue select the Disabled button to disable apcupsd:

After closing the dialogues, reboot the system, typical of Microsoft :−(. When the system comes back up,
apcupsd will not be automatically launched as a service, and you can install the new version. To reinstate
apcupsd as an automatic service, using the Control Panel: reset apcupsd to Automatic startup in the Startup
dialogue, then restart apcupsd in the Services dialogue as shown above in the installation instructions.
Frequently after an upgrade, you will click on the Start button and after a few seconds, the system reports that
it failed to start. The cause of this problem is unknown, but the solution is simply to click again on the Start

APC UPS management under Linux

Installation Directory 151

button.

Post Installation

After installing apcupsd and before running it, you should check the contents of two files to ensure that it is
configured properly for your system. The first is c:\apcupsd\etc\apcupsd\apcupsd.conf. You will probably
need to change your UPSCABLE directive, your UPSTYPE and possibly your DEVICE directives. Please
refer to the configuration section of this manual for more details.

The second file that you should examine is c:\apcupsd\etc\apcupsd\apccontrol. This file is called by
apcupsd when events (power loss, etc) are generated. It permits the user to program handling the event. In
particular, it permits the user to be notified of the events. For the Win32 version, each event is programmed to
display a Windows popup dialogue box. If your machine is mostly unattended, you may want to comment out
some of these popup dialogue boxes by putting a pound sign (#) in column one of the appropriate line.

Problem Areas

In addition to possible problems of reinstallation or upgrade on WinNT systems, as noted above, we have
discovered the following problem: On some Windows systems, the domain resolution does not seem to work
if you have not configured a DNS server in the Network section of the Control Panel. This problem should be
apparent only when running a master or a slave configuration. In this case, when you specify the name of the
master or the slave machine(s) in your apcupsd.conf file, apcupsd will be unable to resolve the name to a
valid IP address. To circumvent this problem, simply enter all machine addresses as an IP address rather than
a domain name, or alternatively, ensure that you have a valid DNS server configured on your system (often
not the case on Win32 systems). For example, instead of using the directive:

MASTER my.master.com use something like:

MASTER 192.168.1.54 where you replace the IP address with your actual IP address.

Also, on WinNT systems, the PIF files in /apcupsd/bin used for starting and stopping apcupsd do not work.
Use the services control panel instead.

On Win95 systems, there are reports that the PIF files do not work. If you find that to be the case, the simplest
solution is to use the batch files that we have supplied in the c:/apcupsd/bin directory. Also, on Win95
systems, we have an unconfirmed report that indicates that apcupsd does not start automatically as a service
even though the Registry has been properly updated. If you experience this problem, a work around is to put a
shortcut to apcupsd in the StartUp folder.

As noted above, after an upgrade, you may need to start apcupsd several times before it will actually run.

On WinNT, WinXP, and Win2K systems, you can examine the System Applications log to which apcupsd
writes Windows error messages during startup.

Regardless of which Windows system you are running, apcupsd logs most error messages to
c:\apcupsd\etc\apcupsd\apcupsd.events. This type error messages such as configuration file not found, etc
are written to this file.

APC UPS management under Linux

Post Installation 152

Utility Functions

The directory c:\apcupsd\bin contains six utility routines (actually .pif files) that you may find useful. They
are:

Start
Stop
Install
Uninstall
ups−events
ups−status

Any of these utilities may be used on any system, with the exception of the Start utility, which cannot be used
on WinNT and Win2000 systems. On those systems, the apcupsd service must always be started through the
Services sub−dialogue of the Control Panel.

The Install and Uninstall utilities install and uninstall apcupsd from the system registry only. All other
pieces (files) of apcupsd remain intact. It is not absolutely necessary for apcupsd to be installed in the
registry as it can run as a regular program. However, if it is not installed in the registry, it cannot be run as a
service.

The functions of Stop, ups−events, and ups−status can be more easily invoked by right clicking on the
apcupsd icon in the system tray and selecting the desired function from the popup menu.

Disclaimer

Some of the features such as EEPROM programming have not been exhaustively tested on Win32 systems. If
at all possible, we recommend not to use it as a network master on Win95, Win98, and WinMe due to the
instability of those operating systems.

Some items to note:

This version of apcupsd will not attempt to shut off the UPS power when the battery is exhausted.
Thus if the power returns before the UPS completely shuts down, your computer may not reboot
automatically. This is because we do not know how to regain control after the disks have been synced
in order to shut off the UPS power.

•

Nevertheless, it is possible to use the −−kill−on−powerfail option on the apcupsd command line, but
the use of this option could cause the power to be cut off while your machine is still running. See the
section on Shutdown Chapter of this document for a more complete discussion of this subject. If you
are still interested in trying to get this to work, please look at the code that is commented out in
c:\apcupsd\etc\apcupsd\apccontrol under the doshutdown case.

An alternative to the −−kill−on−powerfail option is to use the KILLDELAY configuration directive
as explained in the Configuration Section of this document.

This configuration directive is appropriate on Windows machines where apcupsd continues to run
even when the machine is halted (as is the case on most NT machines).

When apcupsd detects important events, it calls c:\apcupsd\etc\apcupsd\apccontrol, which is a
Unix shell script. You may modify this script to suit your particular needs. Currently, it puts a

•

APC UPS management under Linux

Utility Functions 153

Windows dialogue on the screen with a brief explanation of the event. If these dialogues annoy you,
you can remove or comment out the calls to popup from this file.

Email Notification of Events

On Win95/98 systems, it is possible to receive notification of apcupsd events that are passed to apccontrol.
This is possible using a simple email program that unfortunately is not functioning 100% correctly. In
addition, I (Kern) was not able to make this program work on WinNT while apcupsd is running as a service
under the system account (it works fine with any user account).

If you wish to try this program on Win95/98 systems, look at the files named changeme, commfailure,
commok, onbattery, and mainsback in the directory c:\apcupsd\examples. To use them, you must modify
the SYSADMIN variable to have a valid email address, then copy the files into the directory
c:\apcupsd\etc\apcupsd.

Killpower under Windows

If your batteries become exhausted during a power failure and you want your machine to automatically reboot
when the power comes back, it is useful to implement the killpower feature of the UPS where apcupsd sends
the UPS the command to shut off the power. In doing so, the power will be cut to your PC and if your BIOS is
properly setup, the machine will automatically reboot when the power comes back. This is important for
servers.

This feature is implemented on Unix systems by first requesting a system shutdown. As a part of the
shutdown, apcupsd is terminated by the system, but the shutdown process executes a script where apcupsd is
recalled after the disks are synced and the machine is idle. Bacula then requests the UPS to shut off the power
(killpower).

Unfortunately on Windows, there is no such shutdown script that we are aware of and no way for apcupsd to
get control after the machine is idled. If this feature is important to you, it is possible to do it by telling
apcupsd to immediately issue the killpower command after issuing the shutdown request. The danger in doing
so is that if the machine is not sufficiently idled when the killpower takes place, the disks will need to be
rescanned (and there is a possibility of lost data however small). Generally, UPSes have a shutdown grace
period which gives sufficient time for the OS to shutdown before the power is cut.

To implement this feature, you need to add the −p option to the apcupsd command line that is executed by the
system. Currently the procedure is manual. You do so by editing the registry and changing the line:

c:\apcupsd\apcupsd.exe /service

found under the key:

HKEY_LOCAL_MACHINE Software\Microsoft\Windows\CurrentVersion\RunServices

to

c:\apcupsd\apcupsd.exe /service −p

APC UPS management under Linux

Email Notification of Events 154

If you have a Smart UPS, you can configure the kill power grace period, and you might want to set it to 3
minutes. If you have a dumb UPS, there is no grace period and you should not use this procedure. If you have
a Back−UPS CS or ES, these UPSes generally have a fixed grace period of 2 minutes, which is probably
sufficient.

Power Down During Shutdown

Our phylosophy is to shutdown a computer but not to power it down itself (as opposed to having the UPS cut
the power as described above). That is we prefer to idle a computer but leave it running. This has the
advantage that in a power fail situation, if the killpower function described above does not work, the computer
will continue to draw down the batteries and the UPS will hopefully shutoff before the power is restore thus
permitting an automatic reboot.

Nevertheless some people prefer to do a full power down. To do so, you might want to get a copy of
PsShutdown, which does have a power down option. You can find it and a lot more useful software at:
http://www.sysinternals.com/ntw2k/freeware/pstools.shtml. to use their shutdown program rather than the
apcupsd supplied version, you simply edit:

c:\apcupsd\etc\apcupsd\apccontrol

with any text editor and change our calls to shutdown to psshutdown.

Command Line Options Specific to the Windows Version

These options are not normally seen or used by the user, and are documented here only for information
purposes. At the current time, to change the default options, you must either manually run apcupsd or you
must manually edit the system registry and modify the appropriate entries.

In order to avoid option clashes between the options necessary for apcupsd to run on Windows and the
standard apcupsd options, all Windows specific options are signaled with a forward slash character (/), while
as usual, the standard apcupsd options are signaled with a minus (−), or a minus minus (−−). All the standard
apcupsd options can be used on the Windows version. In addition, the following Windows only options are
implemented:

/servicehelper
Run the service helper application

/service
Start apcupsdas a service

/run
Run the apcupsd application

/install
Install apcupsd as a service in the system registry

/remove
Uninstall apcupsd from the system registry

/about
Show the apcupsd about dialogue box

/status
Show the apcupsd status dialogue box

/events
Show the apcupsd events dialogue box

APC UPS management under Linux

Power Down During Shutdown 155

http://www.sysinternals.com/ntw2k/freeware/pstools.shtml

/kill
Stop any running apcupsd

/help
Show the apcupsd help dialogue box

It is important to note that under normal circumstances the user should never need to use these options as they
are normally handled by the system automatically once apcupsd is installed. However, you may note these
options in some of the .pif files that have been created for your use.

Building the Win32 Version from the Source

If you have the source code, follow the standard procedures for building apcupsd on Unix in the Installation
Section of this manual. Please don't forget to look at the Win32 specific instructions.

APC UPS management under Linux

Building the Win32 Version from the Source 156

Controlling Multiple UPSes on one Machine

General

You may want to use your server to control multiple UPSes. With apcupsd version 3.8.3 or later, this is
possible by proper configuration and by running one copy of apcupsd for each UPS to be controlled.

A multiple UPS configuration might be configured like the following diagram:

 Multi−UPS Configuration (apcupsd 3.8.3 only)

 −−−−−−−−−−−−−−−−−−−−− serial port −−−−−−
 | | <============> | |
 | Computer A running | Power | UPS |
 | two copies of | <============= | 1 |
 | apcupsd | −−−−−−
 | | serial port −−−−−−
 | | <============> | |
 −−−−−−−−−−−−−−−−−−−−− | UPS |
 | ==== | 2 |
 | Ethernet || −−−−−−
 | ||
 −−−−−−−−−−−−−−−−−−−−− ||
 | | ||
 | Computer B running | ||
 | apcupsd in | Power ||
 | slave mode | <===========
 | |
 | |
 −−−−−−−−−−−−−−−−−−−−−

Configuration

The way to accomplish the above is to ensure that none of the critical files used by each of the two copies of
apcupsd are the same. By using suitable configuration options, this is possible.

The First Copy of Apcupsd

For example, assuming you have SmartUPSes in both cases, to configure and install the first copy of
apcupsd, which controls a UPS and Computer A, one could use the following configuration:

./configure \
 −−prefix=/usr \
 −−sbindir=/sbin \
 −−with−cgi−bin=/home/http/cgi−bin \
 −−enable−cgi \
 −−with−css−dir=/home/http/css \
 −−with−log−dir=/etc/apcupsd \
 −−with−serial−dev=/dev/ttyS0 \
 −−enable−pthreads \
 −−with−nis−port=3551 \
 −−enable−powerflute

APC UPS management under Linux

Controlling Multiple UPSes on one Machine 157

This is pretty much a "normal" installation using many of the defaults. Once built and installed, this would
control the first UPS and cause a shutdown of the system when the batteries are low. This copy of apcupsd
will be started and stopped automatically when the system is booted and halted.

The Second Copy of Apcupsd

To configure and install the second copy of apcupsd, which controls the second UPS and Computer B, you
could use the following configuration:

./configure \
 −−prefix=$HOME/apcupsd/bin \
 −−sbindir=$HOME/apcupsd/bin \
 −−enable−cgi \
 −−with−cgi−bin=$HOME/apcupsd/bin \
 −−with−log−dir=$HOME/apcupsd/bin \
 −−with−pid−dir=$HOME/apcupsd/bin \
 −−sysconfdir=$HOME/apcupsd/bin \
 −−with−lock−dir=$HOME/apcupsd/bin \
 −−with−pwrfail−dir=$HOME/apcupsd/bin \
 −−with−serial−dev=/dev/ttyS1 \
 −−enable−pthreads \
 −−with−nis−port=7001 \
 −−disable−install−distdir

Note, in this case, we use considerably more configuration options to ensure that the system files are placed in
a different directory ($HOME/apcupsd/bin). We have also selected a different serial port and a different NIS
(Network Information Server) port. And finally, we have used the −−disable−install−distdir option, which
prevents make install from doing the final system installation (i.e. the modification of the halt script) since
this was previously done.

Important Steps after Installation of the Second Copy

After the make install of the second copy of apcupsd there are a number important steps to complete. You
must either remove or modify the file $HOME/apcupsd/bin/apccontrol, so that it will not shutdown
Computer A when the battery of UPS 2 is low. One suggestion is to copy examples/safe.apccontrol into
$HOME/apcupsd/bin/apccontrol. Alternatively, you could edit the $HOME/apcupsd/bin/apccontrol and
delete all statements that attempt to shutdown the machine.

Another important step is to find a way to shutdown Computer B when UPS 2's battery is low. Probably the
simplest way to do this is to edit $HOME/apcupsd/bin/apcupsd.conf on Computer A so that this second
copy of apcupsd becomes a network master. Then install a standard slave configuration on Computer B.

Please remember that if UPS 1's batteries are exhausted before UPS 2's batteries, Computer B may not be
properly shutdown. And at the current time, there is no simple means to make the two copies of apcupsd
running on Computer A communicate. Thus there are certain risks in such a configuration. However, these
configurations can be very useful for powering electronic equipment and such.

If Computer B is vitally important, it would probably be better to purchase a serial port card for it, or perhaps
use a USB UPS. To ensure that it is properly shutdown if Computer A goes down, you could run a second
copy of apcupsd on Computer B as a slave connected to the main copy of apcupsd on Computer A. Thus
Computer B would be running two slaves, one driven by the master controlling UPS 1 and the other by the
master controlling UPS 2, and Computer B could be shutdown by the first master that signaled it to do so.

APC UPS management under Linux

The Second Copy of Apcupsd 158

APC UPS management under Linux

The Second Copy of Apcupsd 159

Batteries

Battery Problems

If you have your UPS long enough, you will probably have battery problems. Below, you will find some
suggestions for replacing batteries. One IMPORTANT note of caution: at least one user purchased one of the
non−APC batteries noted below and found out that they would not fit into his unit. This required cutting and
soldering and other very undesirable things, so be extremely careful in measuring the batteries including every
millimeter of the terminal connections which can cause problems.

Although you can do a hot swap of your batteries while the computer is running (it works, I tried it), it may
not be very satisfactory because the unit will not know that the batteries have been swapped and apcupsd will
continue to show Low Battery. To correct this situation, you must do a discharge and recharge of the battery.
At that point the battery should be calibrated better. As noted below, Carl has found that it takes several
discharge/charges before the runtime calibration is accurate. Take care not to discharge your battery too much
as it tends to shorten the battery life.

What Various People Have to Say about Batteries

Here is what John Walker has to say about APC UPS batteries:

I thought I'd pass on some information I've obtained which you'll probably eventually need.
Besides, by writing it down I'll be able to find it the next time.

I started installing mine in 1995−1996. Lead−acid batteries have a finite life even if not
subjected to deep discharge cycles. For the batteries used by APC, this is typically four to six
years. As part of the self−test cycle, the UPS measures the voltage of the battery at full charge
(which falls as the battery ages), and if it's below about 90% of the value for a new battery, it
sets off the "Replace battery" alarm, which it repeats every day. [on apcupsd versions prior to
3.8.0, this message is sent once, on version 3.8.0, it is sent every 9 hours − KES].

You will occasionally get a false alarm. It's a good idea if you get an alarm to repeat the
self−test the next day and see if the alarm goes away. If the alarm is persistent, you need to
replace the batteries, which can be done without powering down the UPS or load−you just
open up the battery door, take out the old batteries, and hook up the new ones.

APC makes "Replacement Battery Units" for each of the SmartUPS models, but they sell
them directly only in the U.S.

It's best to wait until the low battery alarm before ordering a replacement−keeping batteries
on the shelf reduces their life unless you keep them fully charged.

And André Hendrick says:

[For replacement batteries] You need to goto you your local Yamaha SeaDoo shop. There are
35 AMP Hour deep cycle marine batteries that are direct replacements. These are gel−cel and
will double the runtime and/or cut your recharge time in half.

Jet Works

APC UPS management under Linux

Batteries 160

1587 Monrovia Ave.
Newport Beach CA 9266?
Tel: +1 714 548−5259

J−W Batteries, Inc.
Tel: +1 714 548−4017

WPS 49−1200
GEL−CELL KB−35 BATTERY

For those that do not know what this means........
I found the best battery for APCC UPS products that use In the two systems below:

SMART−UPS 3000 10.9% is running at 327W runs for 47.0 min.

Smart−UPS 1250 22.3% is running at 279W runs for 54.0 min.

APCUPSD UPS Network Monitor

Thu Jan 18 21:55:36 PST 2001

System Model Status Battery Chg Utility UPS Load UPS Temp Batt. Run Time Data

Linux ATA Development SMART−UPS 3000 ONLINE

 100.0 % 120.2 VAC 10.9 % 36.9 C 47.0 min. All data

Linux ATA Development II APC Smart−UPS 1250 ONLINE

 100.0 % 119.6 VAC 22.3 % 45.9 C 54.0 min. All data

Look at the numbers and see that these batteries are better and have more total running energy
than standard ones.

SMART−UPS 3000 10.9% is running at 327W runs for 47.0 min.
Smart−UPS 1250 22.3% is running at 279W runs for 54.0 min.

APCUPSD UPS Network Monitor
Thu Jan 18 22:00:45 PST 2001
System Model Status Battery Chg Utility UPS Load UPS Temp Batt. Run Time Data
Linux ATA Development SMART−UPS 3000 ONLINE
 100.0 % 120.2 VAC 19.2 % 36.9 C 27.0 min. All data
Linux ATA Development II APC Smart−UPS 1250 ONLINE
 100.0 % 119.6 VAC 21.8 % 45.9 C 55.0 min. All data

SMART−UPS 3000 19.2% is running at 576W runs for 27.0 min.
Smart−UPS 1250 21.8% is running at 273W runs for 55.0 min.
Smart−UPS 1250 46.1% is running at 576W runs for 26.0 min.

Kind of cool.

The 1250 can outrun the 3000 by a factor of two under identical percentages, or run head to
head for the same time.

APC UPS management under Linux

Batteries 161

SMART−UPS 3000 is a 48V based or 4 batteries
Smart−UPS 1250 is a 24V based or 2 batteries
Cheers,

Andre Hedrick
Linux ATA Development

Finally, here is what Carl Erhorn has to say about batteries:

Hi, Folks.

Well, Kern was absolutely right. The problem with my UPS was batteries. It was unexpected
though, because there was no indication of a bad battery right up until the UPS failed entirely.

For those who might encounter the same thing, and don't know what's happening (I didn't
either), here's what happened.

A week or so ago, I turned on one of my SmartUPS 700−NET models. The load is a small
dual P−III unix server (Solaris 8, X86) and a 4MM tape drive. During the normal selftest that
runs when you first turn on any APC UPS, the UPS 'freaked out'. The alarm stuttered at about
4 or 5 beeps per second, and all the panel lights flashed spasmodically, as if something was
loose inside the UPS.

I turned off the UPS and it's load, then turned the UPS on again. This time, everything
seemed fine. I booted the system that was attached, and there were no problems. The status
monitor showed 9 minutes runtime (which indicates fairly low capacity), but the batteries
showed fully charged. I began to suspect a bad inverter in the UPS.

However, Kern told me that he suspected the batteries. So I took the UPS offline, put an old
SU−600 in it's place (just barely big enough to handle the startup peaks − I get an 'overload'
lamp lit for about 2 seconds during boot), and checked out the batteries. They did indicate that
they were near the end of life, so I ordered a replacement set. Those came in on Friday, and
after the initial charge, a complete charge/discharge cycle to recalibrate the UPS, and some
testing, I put it back in service.

Surprise! (Or maybe not?) Kern was right − there is nothing wrong with the inverter or the
charging circuit, and the new cells fixed everything.

What confused me is that there was no 'replace battery' indication from the UPS, even when it
failed, plus a fair amount of runtime indicated with a full charge. So if you see such behavior
on one of your UPS models, it makes sense to replace the batteries, even if there is no
indication that the batteries have failed yet.

One of the things I learned during this process is that the UPS internal calibration will lose
accuracy over the life of the battery. I always do a recalibrate when I install new cells, but
rarely do it after that, as it's time−consuming, and you really can't use the system attached to
the UPS while doing it. Since my systems are almost constantly in use, it's a pain to schedule
a recal, and I tend to put it off. This time it bit me. I'd suggest that folks do a recal at least
once every six months. It will make your runtime estimates much more accurate, and also
allows you to keep track of the state of your batteries.

APC UPS management under Linux

Batteries 162

For those who don't know how to do this, here's what you do. This proceedure should not be
confused with the 'Recalibrate' feature in the APC PowerchutePlus software. They do not do
the same thing.

>From APC's web site:

Perform a Runtime Calibration. This is a manual procedure and should not be confused with
the runtime calibration performed through PowerChute plus. The batteries inside of the
Smart−UPS are controlled by a microprocessor within the UPS. Sometimes it is necessary to
reset this microprocessor, especially after the installation of new batteries. Stop the
PowerChute plus software from running and disconnect the serial cable. There must be at
least a 30% load attached to the UPS during this procedure, but the process will cause the
UPS to shut off and cut power to its outlets. Therefore, attach a non−critical load to the UPS
and then force the UPS on battery by disconnecting it from utility power. Allow the unit to
run on battery until it turns off completely. Make sure a 30% load is present! Plug the UPS
back into the wall outlet and allow it to recharge (it will recharge more quickly turned off and
with no load present). Once the unit has recharged, the "runtime remaining" calculation
should be more accurate. Remember that if the unit is an older model, then the runtime will
not improve significantly.

Background:
An APC Smart−UPS has a microprocessor which calculates runtime primarily based on the
load attached to the UPS and on its battery capacity. On the right side of the front display
panel there is a vertical graph of five LEDs. Each LED is an indication of battery charge in
increments of twenty percent: 20, 40, 60, 80, 100% (bottom to top). For example, if the
battery charge is 99%, then only four of the five LEDs are illuminated.

To ensure that an operating system receives a graceful shutdown when using PowerChute
plus or a SmartSlot accessory, an alert is generated by the Smart−UPS indicating that the UPS
has reached a low battery condition. The alert is audible (rapid beeping), visual (flashing
battery LED or LEDs), and readable through the graphical interface of PowerChute plus
software (or a native UPS shutdown program within a particular operating system.) In order
to calculate this "low battery condition," all Smart−UPS products have a preconfigured low
battery signal warning time of two minutes (this is the factory default setting). There are a
total of four user−changeable settings: 2, 5, 7, or 10 minutes. If the low battery signal warning
time is set for 2 minutes, then the alerts will activate simultaneously two minutes prior to
shutdown. Similarly, if the total runtime for a particular UPS is 30 minutes with a low battery
signal warning time set at 10 minutes, then the UPS will run on battery for 20 minutes before
the low battery alert begins.

Total runtime is primarily based on two factors, battery capacity and UPS load. UPS load and
runtime on battery are inversely proportional: as load increases, battery runtime decreases and
vice versa. When utility power is lost, the UPS begins discharging the battery in order to
support the attached load. Once power returns, the Smart−UPS will automatically begin to
recharge its battery.

My comments on this proceedure:
I believe this proceedure works for all APC models that calulate runtime, not just the
SmartUPS. It's important that you load the UPS to 30% of the UPS capacity, as reported by
apcupsd or another UPS monitor program. I've found that normal house lamps of different

APC UPS management under Linux

Batteries 163

wattages allow me to adjust the load to almost exactly what I want, which is between 30%
and 35% of the UPS capacity. This is critical te getting an accurate reading (according to the
APC web documents). Always bring the UPS to 100% charge first, as indicated by the front
panel lamps, or your UPS monitoring software.

Set the UPS shutdown time to 2 minutes, all other settings to nominal, and disconnect the
serial port cable from the UPS before running the recalibration. If you leave a monitoring
program running through the serial port, it will turn the UPS off early, and you don't want to
do that during a recalibration run. When the run is complete, and the UPS turns off, you can
reattach the serial cable, and the normal loads, and recharge the batteries normally. If you
think you might have a power outage during the recharge time, allow the UPS to recharge to
20% or so (indicated by the panel lamps) before trying to use the computer system. This will
allow the UPS to handle short dropouts while it recharges. Of course, if you can leave the
computer off during the recharge time, the UPS will recharge much faster.

As an aside, when the batteries failed, my total runtime at 100% charge and an idle state was
9 minutes, which is pretty bad. I replaced the batteries with extended capacity cells, which
add about 15% to the stock capacity. Now, after two complete charge/ discharge cycles,
100% charge shows the available runtime to be 42 minutes on the system when it's idle, and
33 minutes when the system is very busy. The differences are due to the load of the computer,
when the disks are busy, and the cpus are not in a halted state (my system halts the cpus when
they are idle, to save power and lower heat, as do other OS like Linux), when compared to an
idle state. Apcupsd indicates the load is about 27% when idle, and as much as 37% when
heavily loaded.

I've found that two charge/discharge cycles result in a more accurate recalibration when
installing new cells. It appears that some batteries need to be put through a couple of
complete cycles before they reach their full capacity. I've also noticed that the full−charge
voltage is different for each battery until they have been through two cycles. On the initial
charge of my new batteries, the 100% charge voltage on the two cells was almost .5 VDC
apart. After two complete cycles, the batteries measure within .01 VDC of each other!

I hope this information helps anyone who might encounter the problem I saw, and also shows
folks how to recal their batteries. If you haven't done a complete recalibration in a year or
two, I'd recommend it, so that you have warning of a low battery instead of what happened to
me.

Regards,
−−Carl

Where Carl Suggests to get Batteries

Hi, Folks.

I'm just replacing the batteries in one of my SmartUPS models, and it occurs to me that some
of you may not know about the place I get them from. I have no relationship with this
company, other than as a customer, but I feel they know what they are doing, their prices are
fair, and they have some interesting batteries available that you can't obtain from APC.

These are the reasons I use them, and I thought this information might be useful to the US list

APC UPS management under Linux

Where Carl Suggests to get Batteries 164

members. They will ship outside of the US. If you have questions, you can contact them
through the email address listed on their web pages. They have always responded pretty
quickly to my questions.

The company is called Battery Wholesale Distributors, and they are located in Georgetown,
Texas. If you have questions, you can reach them by phone at (800) 365−8444, 9:00AM to
5:00PM (their local time), Monday through Friday. I've gotten email from them on the
weekends, although the office is not open then.

I won't post prices, as you can get current pricing from their web site. They have an entire
section dedicated to APC replacement batteries, and it's easy to find what you need. You can
order over the web, or by phone. They accept all the usual credit cards.

The web site (as you might guess) is: www.batterywholesale.com

The thing I really like is that they have found manufacturers who make batteries in the
standard case sizes, but have additional capacity over the original batteries shipped with the
APC UPS models. Often, the difference is as much as 15% or so, and this can result in
additional runtime. It's a nice upgrade for a minor increase in price.

They are also 'green−aware', in that they encourage you to recycle your old batteries, and will
accept the old batteries back from you if you cannot find a local place that recycles them. You
pay the shipping, but I think other than that, there is no charge. I've never done this, as I have
a battery retailer just down the street who will accept my old batteries.

Anyway, if you didn't know about these folks, put the info aside where you can find it when
you need replacement batteries. I won't make any guarantees, but I've been very pleased with
their products, service, and pricing. I hope you find them as helpful to you as I do. I've been
dealing with them since about 1994, and have never been disappointed. The owner of the
place also is very good on technical issues, so if you have questions on their products, he can
get as technical as you need to go.

Regards,
−−Carl

APC UPS management under Linux

Where Carl Suggests to get Batteries 165

http://www.batterywholesale.com

 GNU GENERAL PUBLIC LICENSE
 Version 2, June 1991

 Copyright (C) 1989, 1991 Free Software Foundation, Inc.
 59 Temple Place − Suite 330, Boston, MA 02111−1307, USA

 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

 Preamble

 The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software−−to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.

 When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

 To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

 For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

 We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

 Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.

 Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that re−distributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

 The precise terms and conditions for copying, distribution and
modification follow.

APC UPS management under Linux

Where Carl Suggests to get Batteries 166

 GNU GENERAL PUBLIC LICENSE
 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

 0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Programbelow,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

 1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

 2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

 a) You must cause the modified files to carry prominent notices
 stating that you changed the files and the date of any change.

 b) You must cause any work that you distribute or publish, that in
 whole or in part contains or is derived from the Program or any
 part thereof, to be licensed as a whole at no charge to all third
 parties under the terms of this License.

 c) If the modified program normally reads commands interactively
 when run, you must cause it, when started running for such
 interactive use in the most ordinary way, to print or display an
 announcement including an appropriate copyright notice and a
 notice that there is no warranty (or else, saying that you provide
 a warranty) and that users may redistribute the program under
 these conditions, and telling the user how to view a copy of this
 License. (Exception: if the Program itself is interactive but
 does not normally print such an announcement, your work based on
 the Program is not required to print an announcement.)
.
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based

APC UPS management under Linux

Where Carl Suggests to get Batteries 167

on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

 3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

 a) Accompany it with the complete corresponding machine−readable
 source code, which must be distributed under the terms of Sections
 1 and 2 above on a medium customarily used for software interchange; or,

 b) Accompany it with a written offer, valid for at least three
 years, to give any third party, for a charge no more than your
 cost of physically performing source distribution, a complete
 machine−readable copy of the corresponding source code, to be
 distributed under the terms of Sections 1 and 2 above on a medium
 customarily used for software interchange; or,

 c) Accompany it with the information you received as to the offer
 to distribute corresponding source code. (This alternative is
 allowed only for noncommercial distribution and only if you
 received the program in object code or executable form with such
 an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.
.
 4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

 5. You are not required to accept this License, since you have not

APC UPS management under Linux

Where Carl Suggests to get Batteries 168

signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

 6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

 7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty−free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

 8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

 9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

APC UPS management under Linux

Where Carl Suggests to get Batteries 169

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

 10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

 NO WARRANTY

 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

 END OF TERMS AND CONDITIONS

 Appendix: How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

 To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) 19yy <name of author>

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of

APC UPS management under Linux

Where Carl Suggests to get Batteries 170

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 59 Temple Place − Suite 330, Boston, MA 02111−1307,
 USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

 Gnomovision version 69, Copyright (C) 19yy name of author
 Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
 This is free software, and you are welcome to redistribute it
 under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than `show w' and `show c'; they could even be
mouse−clicks or menu items−−whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

 Yoyodyne, Inc., hereby disclaims all copyright interest in the program
 "Gnomovision" (which makes passes at compilers) written by James Hacker.

 <signature of Ty Coon>, 1 April 1989
 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General
Public License instead of this License.

APC UPS management under Linux

Where Carl Suggests to get Batteries 171

APCUPSD success is due to the many people that helped in development, testing and in many other ways.

Thank all the developers that worked hard to make APCUPSD one of the best piece of software for
UPS management.

Project Starter and Former Code Maintainer:
 Andre Hedrick (andre at linux−ide.org)

Current Code Maintainer and Project Manager:
 Riccardo Facchetti (riccardo at master.oasi.gpa.it)

Serial Communications:
 Andre Hedrick (andre at linux−ide.org)

Alpha Port:
 Kern Sibbald (kern at sibbald dot com)
 João Rochate (jrochate at ualg.pt) testing and machine loan

Caldera:
 John Pinner (john at clocksoft.com)

HP−UX Port:
 Carl Erhorn (Carl_Erhorn at hyperion.com)
 Robert K Nelson (rnelson at airflowsciences.com)

SOLARIS Port:
 Carl Erhorn (Carl_Erhorn at hyperion.com)

OpenBSD Port:
 Devin Reade (gdr at gno.org)

NetBSD Port:
 Neil Darlow (neil at darlow.co.uk)

Win32 Port:
 Kern Sibbald (kern at sibbald dot com)
 Paul Z. Stagner (paul.stagner at charterco.com) testing

WEB Interfaces:
 Kern Sibbald (kern at sibbald dot com)
 Joseph Acosta (joeja at mindspring.com)

Apcupsd Support and Knowledge Base:
 Brian Schau (Brian.Schau at compaq.com)

Hard Core Coders:
 Riccardo Facchetti (riccardo at master.oasi.gpa.it)
 Kern Sibbald (kern at sibbald dot com)

Part Time Coders:
 Jonathan H N Chin (jc254 at newton.cam.ac.uk)
 Andre Hedrick (andre at linux−ide.org)
 Brian Schau (Brian.Schau at compaq.com)

APC UPS management under Linux

Where Carl Suggests to get Batteries 172

 Carl Erhorn (Carl_Erhorn at hyperion.com)

Distributions Mantainers:
 Alpha Kern Sibbald (kern at sibbald dot com) temp
 Debian Leon Breedt (ljb at debian.org)
 FreeBSD/BSDi Jeff Palmer (scorpio at drkshdw.org)
 NetBSD Neil Darlow (neil at darlow.co.uk)
 HP−UX Carl Erhorn (Carl_Erhorn at hyperion.com),
 Robert K Nelson (rnelson at airflowsciences.com)
 OpenBSD Devin Reade (gdr at gno.org)
 RedHat Kern Sibbald (kern at sibbald dot com)
 Slackware Devin Reade (gdr at gno.org)
 Sparc Solaris Carl Erhorn (Carl_Erhorn at hyperion.com)
 SuSE Riccardo Facchetti (riccardo at master.oasi.gpa.it)
 Win32 Kern Sibbald (kern at sibbald dot com)

Project Discussions:
 APCUPSD Mailing List: apcupsd−devel at apcupsd.org

Thanks to American Power Conversion (APC) who helped in giving technical information on their UPSes.

A special thanks to APC who gave me (Riccardo) a Smart UPS 1400 INET when my old Back UPS v/s 650's
battery died. Thank you guys, your help has been invaluable.

Thanks to all the users that send bug reports and suggestions: we need your help.

Thanks to every one I forgot here. If you feel I have forgot your name, please don't hesitate to tell me.

Other Credits

Miquel van Smoorenburg
The Doctor What
Pavel Korensky
Russell Kroll <rkroll at exploits.org> for the CGI programs
Jonathan Benson <jbenson at technologist.com> for adapting the upsstatus.cgi program to work with apcupsd

The gd 1.2 Image Library used in our CGI programs is copyright 1994, 1995, Quest Protein Database Center,
Cold Spring Harbor Labs. Permission granted to copy and distribute this work provided that this notice
remains intact. Credit for the library must be given to the Quest Protein Database Center, Cold Spring Harbor
Labs, in all derived works. This does not affect your ownership of the derived work itself, and the intent is to
assure proper credit for Quest, not to interfere with your use of gd.

gd 1.2 was written by Thomas Boutell and is currently distributed by boutell.com, Inc.

Parts of the VNC project by ATT (cool code) were used as templates for our Win32 code, see:
http://www.uk.research.att.com/vnc

License

Apcupsd is generally licensed under the GNU GPL License version 2. Certain files may carry different
licenses (e.g. LGPL). Please see the License Chapter of this manual for additional details.

APC UPS management under Linux

Other Credits 173

mailto:apcupsd-devel at apcupsd.org
http://www.uk.research.att.com/vnc

AUTHOR

André M. Hedrick

Retired Co−Author

Christopher J. Reimer

Contributors and Testers for Version 3.7.0

André M. Hedrick <andre at suse.com>
Brian Schau <Brian.Schau at Digital.com>
Riccardo Facchetti <riccardo at master.oasi.gpa.it>
Carl Erhorn <Carl_Erhorn at hyperion.com> (Solaris Port)
Petr Soucek <petr at ryston.cz>
Jonathan H N Chin <jc254 at newton.cam.ac.uk>
Neil Darlow <neil at darlow.co.uk>
Michael Perscheid <michael at perscheid.de>
Kaspar Klingholz <kp at balu.klingholz.de>
Chris Adams <cmadams at hiwaay.net>
Vladimir Ivaschenko <hazard.bsn at hazard.maks.net>
Thorsten Ziegler <ziegler at schlund.de>
Matt Mozur <matt.mozur at flashcom.net>
Thomas Porter <txporter at mindspring.com>
David W. Wormuth <dwormuth at post.harvard.edu>
Robert K. Nelson <rnelson at airflowsciences.com>
Tom Schroll <storm at liststorm.com>
John McSwain <jmcswain at InfoAve.Net>
Brian Daniels <briandaniels at mindspring.com>
Marcus Redivo <mredivo at binarytool.com>
Al Tuttle (Binkster) <altuttle at home.com>
Christian Moeller <moeller at curbysoft.dk>
Kern Sibbald <kern at sibbald dot com>

The Brave Unnamed PATCH−WORKS and TESTERS on Previous versions

Daniel Quinlan
Tom Kunicki
Karsten Wiborg <4wiborg at informatik.uni−hamburg.de>
Jean−Michel Rouet
Chris Adams
Jason Orendorf
Neil McAllister
Werner Panocha
Lee Maisel
Riccardo Facchetti
Brian Schau

The Information HELPERS and TESTERS.

APC UPS management under Linux

AUTHOR 174

Eric S. Raymond
Chris Hanson
Pavel Alex
Theo Van Dinter
Thomas Porte
Alan Davis
Oliver Hvrmann
Scott Horton
Matt Hyne
Chen Shiyuan

Other Credits

Miquel van Smoorenburg
The Doctor What
Pavel Korensky
Russell Kroll <rkroll at exploits.org> for the CGI programs
Jonathan Benson <jbenson at technologist.com> for adapting the upsstatus.cgi program to work with apcupsd

gd 1.2 Image Library used in our CGI programs

gd 1.2 is copyright 1994, 1995, Quest Protein Database Center, Cold Spring Harbor Labs. Permission granted
to copy and distribute this work provided that this notice remains intact. Credit for the library must be given to
the Quest Protein Database Center, Cold Spring Harbor Labs, in all derived works. This does not affect your
ownership of the derived work itself, and the intent is to assure proper credit for Quest, not to interfere with
your use of gd.

gd 1.2 was written by Thomas Boutell and is currently distributed by boutell.com, Inc.

Parts of the VNC project by ATT (cool code) were used as templates for our Win32 code, see:
http://www.uk.research.att.com/vnc

Bugs and Limitations

All the network modes are not supported yet. There are possible bugs in all ShareUPS mode types. If anyone
has had success at all with any ShareUPS models, please report it.

EtherUPS/NetUPS

This is fully functional as of version 3.4.0.

Disclaimer NO WARRANTY

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE
PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE
PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND

APC UPS management under Linux

Other Credits 175

http://www.uk.research.att.com/vnc

PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE,
YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR
THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

Riccardo

APC UPS management under Linux

Other Credits 176

Features in Previous Versions of Apcupsd

New features in Apcupsd 3.9.8•
New features in Apcupsd 3.8.5•
New features in Apcupsd 3.8.4•
New features in Apcupsd 3.8.3•
New features in Apcupsd 3.8.2•
New features in Apcupsd 3.8.1•
New features in Apcupsd 3.8.0•
New features in Apcupsd 3.7.2•
Upgrading to Apcupsd 3.7.2•

APC UPS management under Linux

Features in Previous Versions of Apcupsd 177

New Features in Apcupsd 3.9.8

−−−−> Release apcupsd−3.9.8 (27 January 2002)
 − New drivers layer adds new keywords to the UPSTYPE configuration
 variable (dumb, apcsmart, usb, snmp, net, and test). NOTE! only the
 first three are currently functional. All the old UPSTYPE keywords
 are translated into dumb or apcsmart for backward compatibility.
 NOTE! snmp, net, and test drivers are experimental and thus
 largely non−functional.
 − Reorganized developers documentation inside an html manual
 (Riccardo).
 − Support SCO OpenServer.
 − Includes all enhancements to the officially released versions through
 3.8.5.
 − Make drivers block a reasonable amount of
 time (maximum 1 minute, minimum 1 second). Blocking is determined
 by the state and functions requested.
 − Many enhancements to the USB driver to support SmartUPSes (mostly).
 − New code by Kamal to handle and truncate the events file.
 − New smtp program to permit email messages from WinNT/Win2000 machines.
 − Updates to apcaccess.
 − New Dmsg() debug message code implemented.
 − Include apctest Runtime Calibration feature.

−−−−> Release apcupsd−3.9.4 Aug 13 2001
 − Improvements in master/slave timeout detection and error messages.
 − New master connect/disconnect events (accontrol).
 − Additional master/slave documentation.
 − Document USB.
 − Updated manual to include ideas/suggestions received
 from users installing 3.8.2.
 − Fixed safe.apccontrol to be a bit more system independent
 (thanks to Steven Orr for the idea).
 − Added safe.apccontrol.in so that it is configured properly.
 − Added a big warning message to the end of the ./configure
 output if /usr/ucb is on your path.
 − Fixed reference to lock file in Solaris apcupsd.in so it is
 properly configured.
 − Removed unused variable from Solaris apcupsd.in
 − Added Makefile to examples directory
 − Modified main Makefile.in to do clean and distclean of examples
 − Additional documentation.
 − Removed the sleep 2d from the halt script.
 − Install apcupsd.conf with 644 permissions
 − Add −−disable−install−distdir ./configure option.
 This allows easier installation of slaves or
 multiple copies of apcupsd.
 − Used makedepend if not gcc (Solaris fix).
 − Set SO_REUSEADDR in slave machines.
 − Add 940−0020C cable support (same as 20B).
 − UPSNAME now sets upsname if given. Otherwise,
 apcupsd attempts to get name from UPS, if not found,
 uses hostname, finally "default".
 − Implement CommLost NIS status.
 − Implement Shutdown NIS status.
 − Implement Slave NIS status.
 − Correct SmartTrim and SmartBoost detection code.
 − ./configure prints name of shutdown program.
 − Add port to hosts.conf.

APC UPS management under Linux

New Features in Apcupsd 3.9.8 178

 − Add new apccontrol arguments to script file.
 − Add UPSNAME to RedHat apccontrol.
 − Manual updates.
 − Eliminated all N/A fields in STATUS report.
 − Always construct STATFLAG in STATUS report.
 − Added generic symlink installation in distributions/
 − Cleanups of main Makefile.in

apcupsd is mainly developed under Linux and will compile cleanly and work under most flavors of Unix as
well as many other operating systems including Windows.

What to do if you find bugs :

send an email to apcupsd−devel at apcupsd.org (Developers mailing list) or go to one of the following sites:

http://www.apcupsd.org
http://www.sibbald.com/apcupsd

Please be sure to include the version of apcupsd you are running, your operating system, and a detailed
description of your problem.

Change Log

−−−−> Release apcupsd−3.9.8 (xx January 2002)

APC UPS management under Linux

New Features in Apcupsd 3.9.8 179

mailto:apcupsd-devel at apcupsd.org
http://www.apcupsd.org
http://www.sibbald.com/apcupsd

New Features in Apcupsd 3.8.5

This version of apcupsd corrects a bug that could cause a master/slave process to die due to a TCP/IP
disconnect error.

This version also includes the ability with the apctest program to perform a Battery Runtime Calibration. For
more information on using apctest, please see the apctest Chapter of this manual.

apcupsd is mainly developed under Linux and will compile cleanly and work under most flavors of Unix as
well as many other operating systems including Windows.

What to do if you find bugs :

send an email to apcupsd−devel at apcupsd.org (Developers mailing list) or go to one of the following sites:

http://www.apcupsd.org
http://www.sibbald.com/apcupsd

Please be sure to include the version of apcupsd you are running, your operating system, and a detailed
description of your problem.

Change Log

−−−−> Release apcupsd−3.8.5 (4 January 2002)
 − Add Battery Runtime Calibration to apctest.
 − apctest is now built and installed by default.
 − Fixed crash if TCP/IP connection broken.
 − Quote DISTVER in case it contains spaces.
 − Fix segmentation fault if kill power invoked by hand in
 a non−powerfail condition.

APC UPS management under Linux

New Features in Apcupsd 3.8.5 180

mailto:apcupsd-devel at apcupsd.org
http://www.apcupsd.org
http://www.sibbald.com/apcupsd

New Features in Apcupsd 3.8.4

There are no new features other than two additional cables that are supported. This is a bug fix release for
3.8.3.

The software is completely developed under Linux and will compile cleanly and will work under Linux as
well as many other operating systems and flavors of Linux.

What to do if you find bugs :

send an email to apcupsd−devel at apcupsd.org (Developers mailing list) or go to one of the following sites:

http://www.apcupsd.org
http://www.sibbald.com/apcupsd

Change Log

−−−−> Release apcupsd−3.8.4 (14 Dec 2001)
 − Fix multimoncss.c to use the Normal class in Temp and
 Humidity columns.
 − Add support for 0127A and 0128A cables.
 − Fix bad placement of subsys lock file on
 RedHat, HP, SuSE, Caldera, Slackware, and unknown
 systems.
 − Added #include to multimon to prevent compiler
 warnings.

APC UPS management under Linux

New Features in Apcupsd 3.8.5 181

mailto:apcupsd-devel at apcupsd.org
http://www.apcupsd.org
http://www.sibbald.com/apcupsd

New Features in Apcupsd 3.8.3

· Highlights of this release:

. The ./configure program prints a warning message if /usr/ucb is
 on your path. This for Solaris systems where the wrong shutdown
 program could be used.
. Corrected serial port lock file location on Solaris.
. Added an optional port specification to the hosts.conf file
 for configuring multimon.cgi
. Added the −−disable−install−distdir configure option to allow
 clean installation of two or more apcupsds on the same system.

The software is completely developed under Linux and will compile cleanly and will work under Linux as
well as many other operating systems and flavors of Linux.

What to do if you find bugs :

send an email to apcupsd−devel at apcupsd.org (Developers mailing list) or go to one of the following sites:

http://www.apcupsd.org
http://www.sibbald.com/apcupsd

Change Log

−−−−> Release apcupsd−3.8.3 (26 Nov 2001)
 − Updated manual to include ideas/suggestions received
 from users installing 3.8.2.
 − Fixed safe.apccontrol to be a bit more system independent
 (thanks to Steven Orr for the idea).
 − Added safe.apccontrol.in so that it is configured properly.
 − Fixed all apccontrol.sh.in so that it restart the computer if shutdown
 was cancelled. Fixed also the lock directory location in rc scripts.
 − Removed infinite sleep from shutdown sequences.
 − Added a big warning message to the end of the ./configure
 output if /usr/ucb is on your path (for Solaris shutdown).
 − Updated Solaris configuration with specific config values.
 − Fixed reference to lock file in Solaris apcupsd.in so it is
 properly configured.
 − Removed unused variable from Solaris apcupsd.in
 − Install apcupsd.conf with 644 permissions
 − Add −−disable−install−distdir ./configure option.
 This allows easier installation of slaves or
 multiple copies of apcupsd.
 − Used makedepend if not gcc (Solaris fix).
 − Set SO_REUSEADDR in slave machines.
 − Use select() to timeout master if slave does not respond.
 − Recognize APC Smart−UPS 370ci.
 − Add 940−0020C cable support (same as 20B).
 − UPSNAME now sets upsname if given. Otherwise, apcupsd
 attempts to get name from UPS, if not found, uses
 hostname, finally "default".
 − Implement CommLost NIS status.
 − Implement Shutdown NIS status.
 − Implement Slave NIS status.
 − Correct SmartTrim and SmartBoost detection code.

APC UPS management under Linux

New Features in Apcupsd 3.8.3 182

mailto:apcupsd-devel at apcupsd.org
http://www.apcupsd.org
http://www.sibbald.com/apcupsd

 − ./configure prints name of shutdown program.
 − Add port to hosts.conf.
 − Add new apccontrol arguments to script file.
 − Eliminated all N/A fields in STATUS report.
 − Always construct STATFLAG in STATUS report.
 − Added Ambient Temperature and Humidity to multimon (Carl Erhorn)

APC UPS management under Linux

New Features in Apcupsd 3.8.3 183

New Features in Apcupsd 3.8.2

· Highlights of this release:

. Detects Self Test and reports it as such rather than a
 Power Failure.
. True pthreads implementation (uses less CPU and one third
 the memory).
. For SmartUPSes, apcupsd does a much better job of adapting
 to the actual features of the UPS and is more efficient.
. Many new ./configure options permitting much more complete
 pre−configuration. Nearly every possible file and feature
 is configurable.
. More complete and updated support for more systems (Caldera,
 Debian, FreeBSD, NetBSD, OpenBSD)
. Correction of all outstanding 3.8.0 and 3.8.1 bugs.
. Cascading Style Sheet version of multimon for user customization.
. TCP Wrapper support (untested).
. KILLDELAY configuration directive requested by users (untested).
. Reap zombies on BSD systems.
. Win32 shutdown program significantly enhanced, now shuts
 down in all known configurations giving users time to save
 their changes.
. Win32 version uses threads rather than Unix processes.

The software is completely developed under Linux and will compile cleanly and will work under Linux as
well as many other operating systems and flavors of Linux.

What to do if you find bugs :

send an email to apcupsd−devel at apcupsd.org (Developers mailing list) or go to one of the following sites:

http://www.apcupsd.org
http://www.sibbald.com/apcupsd

Change Log

−−−−> Release apcupsd−3.8.2 (3 July 2001)
 − Additional documentation.
 − Bug fix provided by Riccardo.
 − Update script for making RPMs.
 − Please remember that apcnetd has been renamed to
 apcnisd
 − Tweaked the pthreads flags for FreeBSD
 − Added Linux From Scratch hint file to unknown distribution.
 − Fixed Makefile in lib to use CFLAGS.

−−−−> Released apcupsd−3.8.2Beta14 (24 Jun 2001)
 − Fixed stall in Network Information Server
 − Fixed possible race condition in pthreads
 Network Information Server.
 − Fixed a serious shutdown bug for BackUPS UPSes.
 − Tightened security for some scripts (thanks Neil).
 − More cleanups for −−with−pwrfail−dir so it
 is properly configured.

APC UPS management under Linux

New Features in Apcupsd 3.8.2 184

mailto:apcupsd-devel at apcupsd.org
http://www.apcupsd.org
http://www.sibbald.com/apcupsd

 See techdocs/kes27Jun01 for more details.

−−−−> Released apcupsd−3.8.2Beta13 (21 Jun 2001)
 − Fixed bug in creation of PWRFAIL file. Thanks to
 Jose for his excellent testing efforts.
 − Cleaned up configuration of PWRFAILDIR in
 distribution files.
 − Fixed installation of multimon.css
 − Implemented localtime_r() for Win32 systems.

−−−−> Released apcupsd−3.8.2Beta12 (20 Jun 2001)
 − Fixed CGI Makefile problems pointed out by Carl.
 − Fixed SuSe install problem pointed out by user (and
 fixed provided by Neil).
 − Fixed powerflute, which has been broken for a long time.
 − Upgraded powerflute to work with pthreaded apcupsd (via
 TCP/IP).

−−−−> Released apcupsd−3.8.2Beta11 (12 Jun 2001)
 − Mostly documentation and small bug fixes.
 − Reworked installation of CSS files in CGI directory.
 − use localtime_r() to avoid potential problems in
 threaded version.
 − Cleaned up a few serious shutdown problems with new
 apcaction code pointed out by a user (thanks!).
 − Fix bug in libwrap code.

−−−−> Released apcupsd−3.8.2Beta9 (28 Apr 2001)
 − As promised with release apcupsd−3.8.1−5, I have
 now added pthreads support −− well, at least it is
 a first cut. The reentrant library calls must still
 be added where appropriate.
 − Configuration with ./configure is now much more
 complete. See kes09Apr01 and kes10Apr01 in techlogs.
 − See kes28Apr01 in techlogs for more details of the
 pthreads implementation.
 − apcaccess and powerflute need NIS running to work
 with a threaded apcupsd.
 − Set SO_REUSEADDR and SO_KEEPALIVE on sockets.
 [ChangeLog] I
−−−−> Released apcupsd−3.8.2Beta6 (10 Apr 2001)
 − Much enhanced ./configure. Lots of new options for easier
 system configuration.
 − New Debian code.
 − New release numbering scheme to eliminate −nn at end for
 packagers.
 − Shared memory initialization improvements.
 − A single apcupsd.conf (built from apcupsd.conf.in) in
 the /etc directory.

 See techlogs/kes9Apr01 for more details.
 See techlogs/kes10Apr01 for more details.

−−−−> Released apcupsd−3.8.1−5 (6 Apr 2001)
 − This version is a pre−release of version 3.8.2.
 It contains fixes for most known problems.
 − Major work has been done to include in this release
 much of the code that will go into version 4.0.
 − Addition merging of 3.8 and 4.0 will occur prior
 to the final release of 3.8.2

APC UPS management under Linux

New Features in Apcupsd 3.8.2 185

 − The only major addition that I am planning to 3.8.2
 for the next prerelease (3.8.1−6) will be pthread
 support (at least the first cut).
 − The name of apcnetd has been changed to apcnisd
 − OpenBSD fixes from Devin Reade
 − Fixed Zombies that were created on BSD systems.

 New Features:
 − New indenting standard (see code). Not yet uniformly
 applied −− work in progress.
 − New NetBSD support.
 − Updated Debian support.
 − apccontrol now called with additional arguments.
 − GNOME realtime monitoring program added in gupsc
 directory (not supported).
 − Improved shutdown on WinNT.
 − Self test detection −− no more false power fails.
 − TCP Wrapper support (untested).
 − New KILLDELAY configuration directive (untested)
 that causes apcupsd to wait after issuing a shutdown, and
 after the delay seconds have expired, it will issue a
 kill power to the UPS. Potentially useful on systems
 where apcupsd cannot regain control after completing
 a system shutdown (i.e. WinNT).
 − Multimon can now use css for more control by the user.

 See techlogs/kes06Apr01 for details.
 See techlogs/gdr01Mar01 for more details

−−−−> Release apcupsd−3.8.1−3 (5 Mar 01)
 − Added Caldera code.
 − NetBSD patches.
 − Modified code for handling 940−0095B cable.
 − Integrated 4.0 code

 See techlogs/kes05Mar01 for more details.

−−−−> Release of 25 Feb 2001
 − New NetBSD code (thanks to a number of contributors).
 − Added O_NDELAY to prevent blocking on serial port opens on
 BSD systems.
 − Fixed a bug in the status display on BackUPS Pros that cut
 the output short.
 − Fixed potential DoS problem with email scripts.
 − Much improved shutdown program for Win32 systems.

 See techlogs/kes27Feb01 for additional details.

APC UPS management under Linux

New Features in Apcupsd 3.8.2 186

New Features in Apcupsd 3.8.1

· Highlights of this release.

The software is completely developed under Linux and will compile cleanly and will work under Linux.
Porting is being addressed for Solaris and HP−UX, where the actual code should compile cleanly. If you own
an APC UPS attached to a Linux machine or you want to realize a setup like this, or you are already an user of
older version of apcupsd, please upgrade to the latest version. We need testers and any bug reports will be
more than welcome. ·

What to do if you find bugs :

send an email to apcupsd−devel at apcupsd.org (Developers mailing list) or go to one of the following sites:

http://www.apcupsd.org
http://www.sibbald.com/apcupsd

Change Log

/***/
/* ChangeLog of apcupsd */
/* Riccardo Facchetti */
/* http://www.apcupsd.org */
/* http://www.sibbald.com/apcupsd */
/* ftp://ftp.apcupsd.org */
/***/

−−−−> Released apcupsd−3.8.1
 See techlogs/kes08Dec00
 Corrected depend creation in config.status.
 See techologs/kes05Dec00 for details
 Fixed Win32 to work with simple signalling UPSes.
 Upgraded Win32 to CGYWIN 1.1.5.
 Fixed an Alpha Tru64 64/32 bit problem in the networking code.
 Fixed the random incorrect on battery timers (I think).
 Upgraded to latest version of gcc
 Do much better argument checking in the .cgi programs. This
 improves security (at least psychologically).

−−−−> Released apcupsd−3.8.0
 Additional updates to apctest.c, it now tests
 Smart UPSes as well as Dumb UPSes
 Increase getline buffer size
 Quick documentation of apctest.c

−−−−> Released apcupsd−3.8.0−pre7
 See techologs/kes27Oct00
 Win32 make binary_tar_file
 Rewrote the 940−0119A cable code based on Jason A. Smith's testing.
 Improved apcupsd version print out.
 Win32 and Signaling UPS documentation.

−−−−> Released apcupsd−3.8.0−pre6
 See techlogs/kes21Oct00
 A number of Win32 fixes including an email program for Win95/98.

APC UPS management under Linux

New Features in Apcupsd 3.8.1 187

mailto:apcupsd-devel at apcupsd.org
http://www.apcupsd.org
http://www.sibbald.com/apcupsd

 Put Win32 system binaries in source code.
 Fixed WinNT problem when running as a master or slave.
 Win32 make install.
 Minor corrections to scripts.
 Fixed a Solaris xlib link problem in the cgi directory.

−−−−> Released apcupsd−3.8.0−pre5 for testing
 See techlogs/kes17Oct00
 Applied André's fixes to support the 0119A cable used by the
 BackUPS Office 500.
 Applied Riccardo's fix for Solaris xlib.

−−−−> Released apcupsd−3.8.0−pre4
 Applied Kern's diff, see techlogs/kes06Oct00
 Key points: apcaction.c fix for timer starting during power failure,
 install key event handlers by default that email the
 following events: changeme, commfailure, commok, mainsback,
 and onbattery.

−−−−> Released apcupsd−3.8.0−pre3
 Applied Kern's diff, see techlogs/kes05Oct00
 Key points: fixes to Win32 binary release, manual updates,
 TIMEOUT bug fix, handle pre−1994 UPSes correctly,
 portability issues.

−−−−> Released winapcupsd−3.8.0−pre2 Win32 binarys only
 Applied Kern's corrections to the Win32 binary files.
 Fix to /win32/apccontrol.in
 Add sh.exe to \apcupsd\bin directory.

−−−−> Released apcupsd−3.8.0−pre−1.
 Applied Kern diffs, see techlogs/kes27Sep00
 Key points: Alpha Tru64 port, documentation updates,
 additional retries in networking, new STATUS variables,
 tighten permission of files, RedHat RPM spec, corrections
 to event scripts.

−−−−> Snapshot released 20000911.
 Applied Kern diffs, see techlogs/kes10Sep00
 Key points: Win32 enhancements, buffer overrun
 fix, tightning of file permissions, manual updates.

−−−−> Snapshot released 20000910.
 WIN32 (cygwin) enhancements (KES): win'ization and use of system tray.
 Documentation update.
 autoconf reorganization.

−−−−> apcupsd−3.7.2 released.
 true and false programs are no more hardcoded into the configure script.
 Reorganized some of the distributions/ Makefiles.
 Added FreeBSD installation support.

−−−−> Snapshot released 20000528
 Now apcaccess.c::stat_print() output status to stdout instead of stderr.
 Reorganized the kill_* code in apcupsd.c::main()
 Removed the kill_ups_power argument from apcnet.c::kill_net()
 Moved all save_dumb_status() calls to apcserial.c::setup_serial()
 Applied kern's patch for kill_net in apcupsd.c and some other
 beautifications of the code.
 Changed scripts/autoregen.sh to compile with all the options switched on.
 Added a web page of thanks to the html manual.

APC UPS management under Linux

New Features in Apcupsd 3.8.1 188

 Moved apcproctitle.c to lib/proctitle.c. Use that source only if
 there is not a system setproctitle(3).
 Don't use 's' subflag to ar(1). It's unnecessary since ranlib is
 being called, and more importantly not all ar implementations have it.
 Install distribution−specific apcupsd.conf files if they exist.
 Fixed some calls to open(2) that didn't specify file create modes.
 Added OpenBSD distribution and minor source patches.
 Modified Slackware distribution: Update README, patch instead of
 replacing rc files, delete obsolete distribution files.
 Updated "makediff" developers' tool.
 Minor manual updates.
 Updated again Developers file: we gained more *BSD help.
 Added the '−p' option to cmdline: was missing.
 Abort on killpower for slaves instead of simply exit, in apcupsd.c
 Removed nologin information from apcnet.c because we don't need. All the
 nologin file is managed by apcaction.c

−−−−> Snapshot released 20000511
 New mantainer for Slackware and OpenBSD ports: updated Developers file.
 Applied David patch for slackware
 Applied kern diffs, see techlogs/kes26Jan00
 po/POTFILES file is now removed by main Makefile since is always built.
 Corrected Slackware distribution Makefile.in: it was tied to
 /usr/src. Thanks to John McSwain.
 Corrected a bug in configure.in and include/apc_defines.h in which
 the nologin file was created in /etc/apcupsd/nologin instead of
 /etc/nologin.
 Moved README.solaris to doc/.
 Moved the patch "./1" to techlogs/kern−patch−17−Feb−2000

−−−−> apcupsd−3.7.1 released 17 February 2000
 Bumped version to 3.7.1 and released by Kern since Riccardo
 is on vacation.
 Update to upsbible.html to include additional credits.
 Fixed dumb UPSes, which did not work in version 3.7.0,
 see Kern's fixes techlogs/kes12Feb00

−−−−> apcupsd−3.7.0 released.
 Bumped version to 3.7.0 and released.
 Powerflute: last 8 events are loaded from events file (if present).
 Revamped powerflute: now curses work correctly.
 Small fix to include/apc_config.h to clean Solaris compile.
 Clean intl/ a bit better.
 Fixed apcnetlib.c and apcnetd.c: now apcupsd compile under FreeBSD too.
 Applied kern diffs, see techlogs/kes26Jan00
 Fixed compile for Solaris 2.5.1.
 Added check for snprintf when CGI is configured in configure.in.
 Fixed internationalization inclusion when msgfmt is not found.
 Fixed warning in lib/getopt.c.
 Fixed AC_PATH_PROGS in configure.in.
 Verified clean compile under Linux and HP−UX.
 Added libintl and nls in information at the end of configure.
 Corrected stpcpy warning in intl/dcgettext.c.
 Changed all `make −C', this fixes HP−UX compilation of additional modules
 like internationalization and cgi support.
 Fixed detection of UP−UX version.
 In apcnetlib.c use memset instead of bzero.
 In apcupsd.c don't use TIOCNOTTY if not defined.
 Corrected a macro bug in arguments of setpgrp() call in apcupsd.

−−−−> apcupsd−3.7.0−rc1 released.

APC UPS management under Linux

New Features in Apcupsd 3.8.1 189

 Updated my e−mail and (C) signatures: if you want to make it simple,
 use vim and the scripts you can find in scripts/.
 Restructured include/apc.h inclusion order: now make more sense.
 Corrected setpgrp() call in apcupsd.c for BSD/non−BSD.
 Added FreeBSD to configure autodetection and placeholder in distributions/.
 Other minor fixes to Makefile.in and cgi/Makefile.in
 Fixed make clean for cgi.
 Applied kern diffs, see techlogs/kes17Jan00
 Added slackware scripts from John McSwain.
 Added Kern's fixes to distributions/redhat/awkhaltprog.in
 Applied kern diffs, see techlogs/kes16Jan00
 Added handling of `exit 0' at the end of halt.local as in suse 5.x.
 Added autodetection for SuSE 5.x.
 SuSE installation: written a shell script for installing apcupsd
 directives in /etc/rc.config.

−−−−> apcupsd−3.7.0−beta4 released.
 Bumped version to beta4 and released.
 Fixed a minor po/ problem.
 Applied kern diffs, see techlogs/kes13Jan00
 Applied kern diffs, see techlogs/kes12Jan00
 Fixed CYGWIN detection in configure.in.
 Added clean and distclean for distributions/.
 Added slackware detection but still manual installation (scripts
 generated but no actual installation performed: too dangerous doing
 the code without being able to test).

−−−−> apcupsd−3.7.0−beta3 released.
 Bumped version to beta3 and released.
 Applied kern diffs, see techlogs/kes09Jan00
 Changed clean_threads() in apcexec.c not hang on waitpid, and make
 sure we do all we can to kill the childs.
 Updated INSTALL file to make clear that prior to install a new version
 of apcupsd over an old version, is advisable to make uninstall.
 Corrected a syntax error in distributions/*/apccontrol.sh.in.
 Changed suse halt.local script to:
 . do something only if a powerdown is detected.
 . kill the processes before remounting read only the filesystems.
 Corrected a minor cosmetic (−Wall) in apcnetd.c
 Added −Wall to default CFLAGS.
 Applied kern diffs, see techlogs/kes06Jan00
 Kern minor changes to configure.in.
 Thanks to Tom Schroll, corrected an execv nasty error in apcexec.c.
 Applied kern diffs, see techlogs/kes30Dec99

−−−−> apcupsd−3.7.0−beta2 released.
 Bumped version to beta2 and released.
 Changed install−apcupsd target in main Makefile.in not to overwrite
 old apcupsd.conf file and instead create an apcupsd.conf.new file.
 Applied Kern diffs, see techlogs/kes19Dec99
 Changed the install to warn the user that if an old apcupsd.conf is in
 place, it is saved to apcupsd.conf.old.
 Applied Kern diffs, see techlogs/kes18Dec99.
 Reorganized the path construction in include/apc_defines.h so that now
 file paths are built with autoconf variables and not hardcoded.
 Applied Carl Erhorn patches for Solaris, see techlogs/cpe16Dec99.
 Now SuSE 5.2 is correctly detected (don't know previous versions).
 Cleanups of configure.in.
 Corrected a problem with SuSE and halt scripts where killpower where
 not issued correctly.
 Applied Helmut Messerer corrections.

APC UPS management under Linux

New Features in Apcupsd 3.8.1 190

 Applied Kern diffs, see techlogs/kes09Dec99
 Applied Kern diffs, see techlogs/kes08Dec99
 Added a new contrib/ directory where user contributed files are put.
 New user contribution for sending sms messages on UPS troubles.

−−−−> apcupsd−3.7.0−beta1 released.
 Applied Kern diffs, see techlogs/kes30Nov99
 Applied Kern diffs, see techlogs/kes28Nov99
 Applied Kern diffs, see techlogs/kes20Nov99
 Applied Kern diffs, see techlogs/kes18Nov99
 Applied Kern diffs, see techlogs/kes15Nov99
 More internationalization.
 Applied Kern diffs, see techlogs/kes13Nov99
 Moved TIOCM_LE HP−UX define and friends to include/apc_config.h
 Internationalization: internationalized and translated in Italian all the
 messages that are printed with printf and fprintf: more need to be done
 for error_* functions.
 Removed #ifdef wrapping around debug code and substituted with debug_level
 checks.
 Cleaned a remaining spit of `killpower' in apcupsd.c
 Help screen output to stdout.
 Now (C) and Brian's Support Center are visible in help screen output.
 Updates to the cgi files from Kern.
 Added a vimrc for TABs.
 −−debug argument changed meaning. Now is meant to be set to a number that
 range from 0 to N where increasing numbers means increasing debug output.
 Now we use getopt_long [see getopt(3)] for parsing command line.
 Documentation updates and reorganization: now `developers' documentation
 is in doc/developers/.
 Added support for cable 940−0095B.
 Applied Kern patches: syslog, getline, code cleanups, new cgi
 interface. Read his technical log in techlogs/kes03Nov99
 Added doc/CodingStyle file.
 Added Developers file.
 Some minor code documentation.
 Removed the "failed to reacquire the lockfile" problem. Now we release
 the lockfile just before fork() and reacquire it just after.
 More duplicated code cleanups and nasty bugs fixed in apcaction.c.
 SuSE's apcupsd start script now return green "done" and red "failed"
 (SuSE 6.2)
 apccontrol is installed in /etc/apcupsd/ because we need it when
 filesystems may be umounted.
 Removed powersc script: now it is all done in apccontrol and
 /etc/rc.d/apcupsd scripts.
 Moved _all_ the scripts into scripts/ directory (where they belong).
 apccontrol script installation dir is now sysconfdir
 ${prefix}/etc/apcupsd
 Simplified apcaction.c (removed duplicate code).
 Attempt to document some features of apcupsd.conf.
 Deleted two alarm()s related to apcreports.c from apcaction.c: this
 was a bug.
 Added setproctitle for setting forked procs's argv[0]. Now we have
 apcmain −> waiting for other tasks to exit, generic watchdog.
 apcser −> serial task
 apcact −> actions task
 apcnet −> network task
 apcslv −> netslave task
 so that now we can tell with a `ps' which task is doing what.
 apcserial+apcreports are now one single thread.
 Better locking scheme.
 Removed another nasty bug in Old* variables into apcaction.c. Now

APC UPS management under Linux

New Features in Apcupsd 3.8.1 191

 there is a local structure for these values.
 Removed a nasty bug in apcsetup.c.
 Updated man pages and apcupsd.conf.
 RedHat installation scripts.
 Removed 10 seconds sleep() from terminate().
 SHM ID for sanity checks on SHM accesses.
 Obsolete config options now generate only warnings.
 New error handling routines.
 doc/README.developers updated.
 Syslogging functions are bracketed with HAVE_GCC so that with gcc we
 can use macros and with other compilers we use functions for
 compatibility.
 Syslog functions are now real functions. There's no point in having
 incompatible preprocessor macros when a set of little functions can do
 the job.
 Fixed a next_slave label in apcnet.c with a semicolon for HPUX
 compiler.
 OS detection in configure: now Makefiles and sources know about which
 OS they are supposed to compile for.
 Better integration of lib/ sources into the configure mechanism.
 configure cleanups.
 Added cflags and ldflags selection in Makefile.in and configure.
 Fixed getopt_long detection in configure. Now if not found it compile
 the lib/ version.
 Now configure.in have a hardcoded PATH in which search the system
 programs needed.
 Lot of cleanups in global variables and code partitioning and
 duplication.
 More configure cleanups.
 Updated RH 6.0 halt script.
 Removed apchttp.
 Cleaned THREADS. Now forked processes are the only option.
 Various cleanups.
 SuSE−specific install/uninstall.
 All distribution specific directories are now in distributions/.
 All scripts are now in scripts/.
 Moved default apcupsd.conf in etc/.
 Added distribution−specific scripts installation.
 Install /etc/apcupsd.conf if not alredy present.
 Removed apc(un)install.sh: no more needed.
 Rewritten external scripts: no more system(), better customization
 support.
 Removed Makefile.in.in from po/: it's not needed.
 Fixed bogus −−enable and −−disable behavior of configure.
 Cleaned up po/ and intl/ autoconf.
 Only powerflute is linked with ncurses libraries.
 The program makedepend is not any more vital for compilation.

−−−−> apcupsd−3.6.2
 Fixed the "apcupsd −c" configure command.
 Fixed two thread bugs in alarm handling.
 Fixed two potential security exploits.
 More cleaned up autoconf.
 Random documentation cleanups.

−−−−> apcupsd−3.6.1
 Cleaned up new autoconf stuff from version 3.6.0
 Undefined a test flag for testing networks wierdness.
 #undef WACKY_NETWORK_ATTEMPS
 Network is fully functional under non−threaded compile.
 Possible fix for "pipe_master_status" calls on slaves.

APC UPS management under Linux

New Features in Apcupsd 3.8.1 192

 Added 940−1524C smart signal cable support.

−−−−> apcupsd−3.6.0
 Added autoconf.
 Added internationalization support. There is _only_ the support but
 no current code is written for the intl package. It can be compiled
 in, but intl strings have still to be translated (to be done in the
 future).
 Reorganized documentation.
 Reorganized support for distributions. Now we have a directory for
 every possible distribution (suse, unifix, debian etc etc) so that the
 job for the package−men can be easier.

−−−−> apcupsd−3.5.9
 Added new configuration options to reduce init time of daemon.
 powersc CONFIG
 powersc NAME
 powersc BATTERY

−−−−> apcupsd−3.5.8.patch

 Fixes a FIFO error that I forgot to include in the rush
 to release the code

−−−−> apcupsd−3.5.8

 GPL2 source code status finally...........April 7, 1999

 Threaded code is stable but requires glibc2 or libc6
 Finished SELFTEST setup
 Fixed naming of UPS if allowed.
 Redesigned "apcsetup.c" to allow for ease of parameter setup.

−−−−> apcupsd−3.5.7

 Added 940−0024G cable.
 "newbackupspro" to be replaced by "backupspropnp"

 If you have a BackUPS Pro UPS that is identified as
 BP(SIZE)(EXTRAS) examples BP420SC/BP650SC/BP650PRO−PnP,
 then you have a PnP BackUPS Pro that is very near a SmartUPS.
 Else anything with the identifier BK(SIZE)PRO or BKPRO(SIZE)
 is the very early version of the "dumbed down smartups".
 Unfortunately, it has very little to say. It is superior to the
 classic BackUPS (simple signals) in that it can at least tell event
 histories and if the batteries are faulted.

 now powerflute is compiling and working, needs THREADS

−−−−> apcupsd−3.5.6

 See Makefile for enabling flags.

 # New multi−threading code BETA
 #
 # THREADS = 1

 # New multi−threading code with http BETA functional needs THREADS
 #
 # HTTP = 1

APC UPS management under Linux

New Features in Apcupsd 3.8.1 193

 # New/Old powerflute tool
 #
 # MUSIC = 1

 dual building model possible complete.
 intergrated beta http data
 breakages in logs and procfs are still present in shm.
 code sorting and corrections.
 return of ncurses powerflute tool.
 fixed Makefile to find two possible locations of
 ncurses package; however, there are three methods for this animal.

 apcconfig.c: removed check for existance of lock directory. It's not
 needed and dangerous when −killpower !
 apcconfig.c: new configuration checks
 added semun definition to apc_struct.h since it is needed for glibc6

−−−−> apcupsd−3.5.5

 dual building model begun.
 intergrated beta shared memory mapping.
 breakages in logs and procfs are present.

−−−−> apcupsd−3.5.4

 Preparation for GPL status and transfer to GNU.
 Fixed Network bug.
 Fixed IPC PIPE bug.

−−−−> apcupsd−3.5.3

 Fixed UPS killpower bug.

−−−−> apcupsd−3.5.2

 Source wide reformat to conform to standard C programing format

−−−−> apcupsd−3.5.1

−−−−> apcupsd−3.5.0

 fixes "NO" reports in setup loops for UPSes that do not allow for
 changing parameters at initialization. Previously it was assumed that
 UPSes did not report anything if the feature was not pollable and/or
 changeble.

−−−−> apcupsd−3.4.9

 fixes a long missed error that was incorrectly fixed in the past.

−−−−> apcupsd−3.4.8

 solved more mystery functions and the UPSlink language may
 be completely decoded.

−−−−> apcupsd−3.4.7

 now auto−learns features based on UPS's answer to questions.
 initial porting to Solaris for i386 is complete.

APC UPS management under Linux

New Features in Apcupsd 3.8.1 194

−−−−> apcupsd−3.4.6 45493 Jul 15 13:14 apcupsd.c
 22326 Jul 9 12:50 apcnet.c
 12129 Jul 9 12:50 apcpipe.c
 25634 Jul 9 12:50 apcconfig.c
 8565 Jul 15 13:07 apcsetup.c
 11039 Jul 15 13:09 apcreports.c
 18137 Jul 15 13:19 apcsmart.c

 all logging functions will be moved to "apcreports.c"
 all smart mode calls will be moved to "apcsmart.c"
 fix ups model reporting in "apcsetup.c"

−−−−> apcupsd−3.4.5 77096 Jul 7 17:18 apcupsd.c
 22326 Jul 7 03:12 apcnet.c
 12129 Jun 22 15:12 apcpipe.c
 25634 Jul 7 16:39 apcconfig.c

 18477 Jul 7 02:08 apcaccess.c

 Added NOLOGON delay for systems with large Matrix UPSes.
 Short information polling, with constant values being set
 in the extended setup functions.

−−−−> apcupsd−3.4.4
 Fixed a missing and needed wait delay for netmaster systems.
 This was discovered when mixing flavors of Linux.
 Since SuSE, RHS, and Debain require extra time for shutdowns.
 man−page is closer to date..........

−−−−> apcupsd−3.4.3
 Added new limit features by polling a new command for
 internal calculated remaining time on line.
 Fixed naming UPS if allowed.

−−−−> apcupsd−3.4.2
 Fixed an unknown error for the forced ups−kill for the
 backupspro models. This was discovered with a new
 BackUPS Pro 1000.

−−−−> apcupsd−3.4.1
 Changed ./includes to have an "apc_" prefix.
 This is for initial port requirements to FreeBSD.

−−−−> apcupsd−3.4.0 72305 May 19 14:18 apcupsd.c
 21597 Apr 16 17:59 apcnet.c
 12117 Apr 16 15:44 apcpipe.c
 22832 Apr 16 15:42 apcconfig.c

 17687 Apr 16 13:47 apcaccess.c

Slave management disconnect/reconnect added to apcaccess.
Fixed excessive loss of UPS communications loggings of ::
 UPSlink Comm. Error, SM != SM
 UPSlink Comm. reestablished, SM == SM

Fixed Signal/Cable Combination errors.
 A "SmartUPS" with a "Simple Cable" with report as a "BackUPS".

−−−−> apcupsd−3.3.0 72450 Mar 20 01:09 apcupsd.c
 15321 Mar 20 01:08 apcnet.c
 11093 Mar 20 01:09 apcpipe.c

APC UPS management under Linux

New Features in Apcupsd 3.8.1 195

 22465 Mar 20 01:09 config.c

 17300 Mar 20 01:08 apcaccess.c

Network death solved (hopefully)
PowerFlute removed due to unexplainable daemon kills under 2.0.X. and
some cases of 2.1.X. (TCPIP)

This is replaced bye the original tool that now works "apcaccess".
"apcaccess" is functional under both 2.0.X and 2.1.X kernels without
killing the damon "apcupsd".

EPROM programming of many UPS models is now functional.

Example::

apcaccess : polling apcupsd for status.

APC : Mar 20 01:24:56
CABLE : APC Cable 940−0024B
UPSMODEL : SmartUPS
UPSMODE : Stand Alone
ULINE : 124.0 Volts
MLINE : 125.2 Volts
NLINE : 124.0 Volts
FLINE : 60.0 Hz
VOUTP : 124.0 Volts
LOUTP : 028.0
BOUTP : 27.3 Volts
BCHAR : 100.0
BFAIL : 0x08
SENSE : HIGH
WAKEUP : 060 Cycles
SLEEP : 020 Cycles
LOTRANS : 103.0 Volts
HITRANS : 129.0 Volts
CHARGE : 025.0 Percent
UTEMP : 49.5 C Internal
ALARM : Low Batt + 30
DIPSW : 0x0000

root at Orion% cat apcupsd.status
APC : Mar 20 01:27:31
CABLE : APC Cable 940−0024B
UPSMODEL : SmartUPS
UPSMODE : Stand Alone
UPSNAME : UPS_IDEN
ULINE : 124.0 Volts
MLINE : 124.6 Volts
NLINE : 124.0 Volts
FLINE : 60.0 Hz
VOUTP : 124.0 Volts
LOUTP : 028.0 Load Capacity
BOUTP : 27.3 Volts
BCHAR : 100.0 Batt. Charge
BFAIL : 0x08 Status Flag
SENSE : HIGH
WAKEUP : 060 Cycles
SLEEP : 020 Cycles
LOTRANS : 103.0 Volts
HITRANS : 129.0 Volts

APC UPS management under Linux

New Features in Apcupsd 3.8.1 196

CHARGE : 025.0 Percent
UTEMP : 49.5 C Internal
ALARM : Low Batt
DIPSW : 0x0000

−−−−> apcupsd−3.2.2 66556 Jan 27 15:24 apcupsd.c

Fixed a reporting error in /etc/apcupsd.status for CUSTOM SIMPLE cable.
Fixed a reporting error in /var/log/apcupsd.log for CUSTOM SIMPLE cable.

−−−−> apcupsd−3.2.1 67450 Jan 8 13:41 apcupsd.c

Fixed INSTALL from "readhat" to "redhat"
Fixed INSTALL errors of "slackware"

Bug search that causes network death, lost slaves under 2.0.X only??
Bug search that causes text−powerflute to kill daemon only under 2.0.X.

−−−−> apcupsd−3.2.0 66096 Dec 18 16:11 apcupsd.c

apcflute.c all code for reconfiguration complete.

−−−−> apcupsd−3.1.0 65925 Dec 8 21:18 apcupsd.c

−−−−> apcupsd−3.0.0

Now binaries only...........

−−−−> apcupsd−2.9.9 63431 Dec 3 13:05 apcupsd.c

Fixed "for (killcount=0;killcount>3;killcount++)" bug
 ^ killcount.

−−−−> apcupsd−2.9.8 62158 Nov 25 15:13 apcupsd.c

Added user defined magic and security timeouts.
Started powerflute update running master or standalone daemon.
Added another field for SmartUPS procfs file.

−−−−> apcupsd−2.9.7 60945 Nov 18 19:19 apcupsd.c

Added second alternate method for killing power for non SU SmartUPS.
I have one of these older models, and it needs a bigger kick.

Disable lockfiles if slave is a netslave with (ups−>cable == APC_NET),
or ethernet.

−−−−> apcupsd−2.9.6 60156 Nov 10 22:34 apcupsd.c

split source files...........

10885 Nov 10 20:40 apcnet.c :: NetUPS
18805 Nov 10 22:37 config.c :: configuration

5924 Nov 10 19:54 apcflute.c.src :: powerflute interface to apcupsd
5264 Nov 10 12:43 powerflute.c.src :: powerflute tcp management of apcupsd

Brian Schau added lockfiles for serial ports.

NetUPS or EtherUPS now works.
Needs more security likely, you can set your own TCP port number.

APC UPS management under Linux

New Features in Apcupsd 3.8.1 197

Will add user MAGIC at compile in the future.

−−−−> apcupsd−2.9.5 72431 Oct 28 00:27 apcupsd.c

Listing my hack of "powerflute". To enable it edit your /etc/apcupsd.conf
and set NETTIME to any value seconds is something to play around.

Reformat subroutines to get apcupsd to handle networks.

−−−−> apcupsd−2.9.4 70707 Oct 25 13:51 apcupsd.c

Smart V/S is in the same class as a BackUPS Pro.

Riccardo Facchetti has been volunteered to solve the
network part for the project. YEAH!!!!!!!!!!!!

Hello Andre,
I own a SmartUPS v/s and I have played a bit with your apcupsd. I have
found that the SmartUPS v/s command set is similar (if not equal) to the
one of BackUPS PRO, so I have changed the apcupsd.c code to behave this
way and seems to work well.

Another thing: I would like to have an application like powerchute. Of
course I am willing to write it, so I will call it powerflute.

My idea is:

apcupsd −> daemon
 − controls power status
 − listen on a TCP socket for incoming connections
 − get a command from TCP line
 − send the response to the command

powerflute −> application
 − connect to apcupsd
 − sends a command to apcupsd
 − get the response from apcupsd

apcupsd is listening to the socket with a select so it don't block. After
one or more connections are established, it read non−blocking from the TCP
file descriptor(s) and when a char is available, send it to UPS and
readline(), then send the buffer (terminated with '\n' to the TCP client
over the connection file descriptor.

You can note that I have protected apcupsd UPS monitoring from TCP
servicing by doing only non−blocking calls to the TCP layer, so there
should be no problem for it in detecting power problems without delay
caused by TCP connections.

A patch is enclosed for v/s == BKpro and for TCP servicing.
Of course this patch is still very preliminar, but I think it is a good
idea.

You can try the idea running the apcupsd with this patch applied,
telnetting to the port 6669 from localhost (no external connections
allowed now for security) and sending to the daemon some commands for the
UPS. The daemon will redirect them to the UPS and send the answer to you.
You can connect more than one client to the daemon (max 64 connections).

Please send me comments about it.

APC UPS management under Linux

New Features in Apcupsd 3.8.1 198

Ciao,
 Riccardo.
−−
Riccardo Facchetti | e−mail: riccardo at master.oasi.gpa.it

The TCP patch is not there but my hack job is present.
The package will have an addition called "powerflute".

−−−−> apcupsd−2.9.3 67655 Oct 23 14:57 apcupsd.c

Fixed spelling of "dissable" to "disable"
Forgot to add this function for ShareUPS.

int fillShareUPS(int sharefd, UPSINFO *ups);

Brian Schau with needed install changes in Makefile
for UNIFIX.

−−−−> apcupsd−2.9.2 67410 Oct 22 19:34 apcupsd.c

Changed "case" names in /etc/apcupsd.conf, again.....
This should be the last time...........

ShareUPS project maybe nearing an end.......

make install is almost done.

−−−−> apcupsd−2.9.1 65886 Oct 19 00:30 apcupsd.c

Changed "case" names in /etc/apcupsd.conf to lower case.
UPSTYPE SMARTUPS is now UPSTYPE smartups
Changed and add two new UPSMODE "cases" for ShareUPSes
Added Two new external call command for TIMEOUT and LOADLIMIT.
Shutdown types are now called by event not by a general shutdown.
Added CHANGEME to /sbin/powersc for SmartUPSes to announce that
its needs a batteries changed.

Tests are now run on (2) BackUPS 600's, SmartUPS Net 1400RM 700RM,
and SmartUPS 1250.

SmartUPSes now can call for shutdown based on percent of remaining
battery life or capacity.

Cleaned up manpage........

−−−−> apcupsd−2.9 58603 Oct 16 22:17 apcupsd.c

Changed to POSIX Style of control.
Now uses an external CONFIG file −> /etc/apcupsd.conf
All events are handled in the /sbin/powersc file, no more
sysvinit flavor hassels....................
Added ManPage, well an attempt.
Other things begun............

−−−−> apcupsd−2.8 42800 Oct 6 14:36 apcupsd.c

Finally solved the PLUG−N−PLAY Cable........
Tested on a BackUPS 600 and SmartUPS 700RM

Someone needs to test a BackUPS Pro........

APC UPS management under Linux

New Features in Apcupsd 3.8.1 199

If main power returns during a shutdown series, "apcupsd" will now reboot.

−−−−>
Better fix and support for #940−0023A cable, but still broke, drat.

−−−−>
Adds new code for UNIFIX Linux

−−−−> apcupsd−2.7.1 35902 Sep 3 21:38 apcupsd.c

By Chris:

More changes and fixes with Pro Series tested.
Better method of "walling" the console.
Minor debugging added.

ShareUPS Project Started, BETA.

−−−−> apcupsd−2.7 35413 Aug 14 15:50 apcupsd.c

TESTED on the following setups:

SLACKWARE SMP/NON−SMP (2.1.49) SmartUPS 700 BackUPS 600
REDHAT 4.1 SMP/NON−SMP (2.0.30) BackUPS 600
SUSE 5.0 SMP/NON−SMP (2.0.30) BackUPS 600

NOTE BackUPS Pro Series Untested at this time of release.

All UPSes can be time limited shutdown.

Fixed all possible killpower problems.....

Changed rc.power to include a NOW command.
Changed inittab file and added

What to do when battery power fails.
pn::powerfailnow:/etc/rc.d/rc.power now

Made changes for SuSE distribution.
Change /sbin/init.d/powerfail file

Chanages to CONFIG File

USE_SLACKWARE=yes
USE_REDHAT=no
USE_SUSE=no

Auto Updater

USE_MAKE_UPDATES=yes
USE_MAKE_INITTAB=yes

RedHat version for "powerstatus" file
REDHAT_VERSION=42

−−−−> apcupsd−2.6 35718 Jul 10 08:10 apcupsd.c

Added more info to apcupsd.maunal about special external controls.
SEE "6) OTHER" in apcupsd.maunal

APC UPS management under Linux

New Features in Apcupsd 3.8.1 200

−−−−> apcupsd−2.6.pre6 35718 Jul 10 08:10 apcupsd.c

Made changes in rc.power to become more universial.
Made N−th attempt to make use of APC cable #940−0095A "DRAT"
in "dumb mode". Will now try "smart mode".
"DOUBLE DRAT" APC has a new cable #940−0095C.
They just want to make things hard for us........
More Pro Fixes

S.u.S.e work around. This is a major DANGER!!!!
If you call /usr/sbin/apcupsd /dev/apcups killpower,
in a non−power problem situation.
"YOU WILL SCREW YOURSELF" this safe guard is a direct override
of the daemon.

−−−−> apcupsd−2.6.pre5a 36279 Jun 23 16:39 apcupsd.c

OOPS......forgot an "endif" in the distribution Makefile

−−−−> apcupsd−2.6.pre5 36279 Jun 23 16:39 apcupsd.c

Added Linux Flavor Dependencies in CONFIG file.
Fixed "nologin", so only root can login during a powerfailure.
All other attempts are defeated at the login prompt.

−−−−> apcupsd−2.6.pre4 35616 Jun 19 15:40 apcupsd.c

Possible RedHat 4.2 fix.

−−−−> apcupsd−2.6.pre3 35282 Jun 17 01:41 apcupsd.c

Fixes RedHat install and Makefile to make backup of files
to be changed during installation. Sorry about the mistake
RedHat users.

−−−−> apcupsd−2.6.pre2 35282 Jun 17 01:41 apcupsd.c

More Pro Fixes and stuff for RedHat install and Makefile

−−−−> apcupsd−2.6.pre1 35279 Jun 16 23:04 apcupsd.c

More Pro Fixes and stuff for RedHat install

−−−−> apcupsd−2.5 36558 Jun 1 19:41 apcupsd.c

More Pro Fixes and stuff for RedHat install

−−−−> apcupsd−2.5.pre4 35240 May 23 11:10 apcupsd.c

Can now re−init logfile at boot time with:
/{path}/apcupsd /dev/apcups newlog
This will help keep the log file from eating your root partition

940−0020B retested, fine
940−0095A untested −−−−−−!!BETA CODE!!−−−−−−−−

−−−−> apcupsd−2.5.pre3 34829 May 22 17:56 apcupsd.c

major bug check....sorry
tested on smart and back ups, not pro yet
940−0020B not retested yet

APC UPS management under Linux

New Features in Apcupsd 3.8.1 201

−−−−> apcupsd−2.5.pre2 28712 May 21 20:39 apcupsd.c

New logging features.

−−−−> apcupsd−2.5.pre

RedHat Support and Back UPS Pro Support via third party.
Christopher J. Reimer

−−−−> apcupsd−2.4 24409 May 19 14:17 apcupsd.c

Back UPS Pro BETA Support

Karsten Wiborg
Christopher J. Reimer

−−−−> apcupsd−2.3 21278 May 13 10:11 apcupsd.c

I made a patch to your apcupsd that allows it to be configured for
external commands to run (instead of the built−in wall). This allows me
to set it up to send out a call to my pager when the power fails, among
other things.

Anyway, here it is.
−−
Chris Adams − cadams at ro.com

not public release, yet.

−−−−> apcupsd−2.2 21275 May 8 12:53 apcupsd.c

Fixed psuedo procfs type status file in the /etc directory.
Now works for both SMART and DUMB MODE.

Eric Raymond
Redit of apcupsd.manual.

−−−−> apcupsd−2.1 20926 May 6 23:08 apcupsd.c

Jason Orendorf

"After building and installing the daemon init files I found
out why you #define the term _ANNOY_ME...it is rather annoying
to get 'wall'ed every 3 seconds − though I do think the
feature is important. I made a trivial modification to a few
files to make the time delay ('wall' frequency) configurable
at build time. If you haven't made this change yourself, feel
free to incorporate these changes into your development source
if you think it would be useful to others."

Eric Raymond

Edited APC_UPSD.README.1ST to apcupsd.manual.
Many thanks.

Finally added psuedo procfs type status file in the /etc directory.
Broken for DUMB MODE

APC UPS management under Linux

New Features in Apcupsd 3.8.1 202

−−−−> apcupsd−2.0 20119 May 2 17:36 apcupsd.c

Name change to help sunsite.unc.edu "keeper" daemon.

Black Cables #940−0024B and #940−0024C are now supported for APC SmartUPS.
They have been tested on an APC SmartUPS SU700/1400RM. I don't know if
it will work on APC BackUPS Pro Series.......
Tested SmartUPS SU700RM with SMNP PowerNet(tm) card and SmartMode i/o
through DB−9 port with 940−0024B and #940−0024C. This means that you
can SMNP manage your SmartUPS with SMNP PowerNet(tm) card. You must have
your own SMNP software..........
Added /proc/apcupsd file for pseudo procfs info.
Deleted announce aka −D_ANNOY_ME, for pseudo procfs info file.

Borrowed a bunch of code for Smart−UPS from Pavel Korensky's apcd.c apcd.h.

−−−−> Enhanced−APC−UPS v1.9 April 17, 1997

Name change to help sunsite.unc.edu "keeper" daemon.

−−−−> Enhanced_APC_UPS v1.9 Apr 14 15:02 apc_upsd.c

bug found by Tom Kunicki
"I still can cause the UPS to shutoff with a power disturbance by
 typing 'apc_upsd /dev/apc_ups killpower' before the disturbance." ... "
 Maybe you could disable the 'killpower' switch except for when the UPS
 is in the condition where it is supposed to be used..."

I have tested my BackUPS cable on the following and it works as designed:
 APC BackUPS 400, APC BackUPS 600, and APC SmartUPS SU1400RM.
I have tested APC's cable #940−0020B on the following and it works as designed:
 APC BackUPS 400, APC BackUPS 600, and APC SmartUPS SU1400RM.
I have NOT tested a BackUPS Pro, since I don't have one yet.

NOTE: My SmartUPS CABLE has broken code and more likely a broken cable design.

Black Cables #940−0024B and #940−0024C are still in the works but not high
priority, yet.

−−−−> Enhanced_APC_UPS v1.8 Apr 8 00:06 apc_upsd.c

Corrected defines in code for 940−0020B, 940−0023A, and 940−0095A.
−D_SMARTUPS can no longer be define if you select USE_APC=yes
There is no SmartUPS "Smart Mode" support, it has never been available.
I am waiting to hear from APC about pinouts for the following cables
#940−0023A their Unix OS cable and
#940−0095A their Win95OS cable.
If you want to use and APC cable, you must have cable #940−0020B ONLY....

Deleted Enhanced_APC_BackUPS.tar.gz from distribution.
Deleted rc.apc_power, all cables use rc.power.

Not publically released at sunsite.unc.edu

−−−−> Enhanced_APC_UPS v1.7g−fix Apr 3 17:42 Makefile

Error in Makefile, rc.apc_power is for testing APC SmartUPS "black" cable.
All installs should use rc.power only, I forgot to make this change in the
distribution Makefile from the Master Makefile.

−−−−> Enhanced_APC_UPS v1.7g Apr 1 15:31 apc_upsd.c

APC UPS management under Linux

New Features in Apcupsd 3.8.1 203

Possible FULL support for Grey cable APC# 940−0020B for BackUPS only
There still may be a bug like the original Enhanced_APC_BackUPS v1.0,
but has not shown it face yet after FIVE (5) forced power outages.

NO SUPPORT YET: Black cable APC# 940−0024B for SmartUPS BackUPS PRO only
This is take MUCH longer.......I don't have either SmartUPS BackUPS PRO to
test with, but can simulate the effect of PIN#8 on a BackUPS 400 and 600.

−−−−> Enhanced_APC_UPS v1.6b Mar 31 22:03 apc_upsd.c

Added USE_APC in CONFIG for using APC cables
Added for using APC cables rc.apc_power
Basic support like original three−wire daemon.

Black cable APC# 940−0024B for SmartUPS and BackUPS PRO only
Grey cable APC# 940−0020B for BackUPS only

VERY BETA......REPEAT, VERY BETA!!!!, ALMOST ALPHA........

Not publically released at sunsite.unc.edu

−−−−> Enhanced_APC_UPS v1.5 Mar 31 12:07 apc_upsd.c

Fixed a possible bug on the SmartUPS side of the daemon.
Retested cable design for "Andreas vasquez Mack"
Soon to test "black APC cable" for "Kofi N. Agyemang" and
 "Pete Rylko"
APC Black Cable Support soon v1.6?

−−−−> Enhanced_APC_UPS v1.4 Mar 1 17:18 apc_upsd.c

Added ANNOUNCE defeat in CONFIG

−−−−> Enhanced_APC_UPS v1.3 Mar 1 16:41 apc_upsd.c

Fixed bug with momentary power outage less than 10 seconds with announce.
That darn announce.......
Added original Enhanced_APC_BackUPS package to distribution.
Never released........

−−−−> Enhanced_APC_UPS v1.2 Mar 1 15:46 apc_upsd.c

Fixed a loop order bug.
It now release the power problems message after power returns.

−−−−> Enhanced_APC_UPS v1.1 Feb 28 16:25 apc_upsd.c

Copied new dowall.c from Sysvinit−2.69.
Added support for SmartUPS (non−Smart Accessories Port).
Fixed the above problem of repeated power failures.
Added cable design for SmartUPS (non−Smart Accessories Port).

−−−−> Enhanced_APC_BackUPS v1.0 Sep 20 01:52 backupsd.c

Known Bug in special power situations. IFF (if and only if) the following
happens will this daemon fail to do its job.

If your power fails long enough to cause "backupsd" to activate and cleanly
shutdown your Linux−Box, and returns later only breifly.

APC UPS management under Linux

New Features in Apcupsd 3.8.1 204

(That is long enough for the UPS to clear the KILL_POWER_BIT and causes)
(your Linux−Box to reboot. But not long enough to recharge you UPS's)
(battery above the low−battery latch state, and power fails again. The)
(daemon cannot currently catch the status change.)

I have never had this happen to me ever, but I can force this to happen
under laboratory test conditions. You can too, but it is not advised.
Your filesystem will say "!@#$%#$*and much more to you.

Thanks for the support and use of this daemon.

hedrick at astro.dyer.vanderbilt.edu
Andre Hedrick

http://www.brisse.dk/site/apcupsd/

APC UPS management under Linux

New Features in Apcupsd 3.8.1 205

New Features in Apcupsd 3.8.0

· Highlights of this release.

. In master/slave configurations, all masters and slaves
 must be updated at the same time. Version 3.8.0 is not
 compatible with versions prior to 3.8.0−pre4.
. An implementation of apcupsd under Win32 has been completed.
. Alpha Tru64 port.
. Support for the Back−UPS Office series of UPSes.
. Fixed dumb UPSes working with the Custom Simple cable.
. Master/slave code works with 64 bit machines.
. Correction of a buffer overflow on certain newer UPSes.
. More fault tolerant on startup in master/slave configuration.
. Additional STATUS variables (number of times on battery,
 amount of time on batteries, time/date of last transfer to
 batteries, apcupsd start time/date).
. Proper support for older (pre 1994) UPSes in slave configurations.
. Tighten file permissions for improved security.
. apctest program for testing serial ports.
. Automatic notification of certain events by email.
. Strip executables during make install.
. A lot of additions to the online manual.
. New −−with and −−enable options in configuration. See
 ./configure −−help

The software is completely developed under Linux and will compile cleanly and will work under Linux.
Porting is being addressed for Solaris and HP−UX, where the actual code should compile cleanly. If you own
an APC UPS attached to a Linux machine or you want to realize a setup like this, or you are already an user of
older version of apcupsd, please upgrade to the latest version. We need testers and any bug reports will be
more than welcome. ·

What to do if you find bugs :

send an email to apcupsd−devel at apcupsd.org (Developers mailing list) or go to one of the following sites:

http://www.apcupsd.org
http://www.sibbald.com/apcupsd

Change Log

/***/
/* ChangeLog of apcupsd */
/* Riccardo Facchetti <riccardo at master.oasi.gpa.it> */
/* http://www.apcupsd.org */
/* http://www.sibbald.com/apcupsd */
/* ftp://ftp.apcupsd.org/pub/apcupsd */
/***/

−−−−> Released apcupsd−3.8.0−pre4
 Applied Kern's diff, see techlogs/kes06Oct00
 Key points: apcaction.c fix for timer starting during power failure,
 install key event handlers by default that email the
 following events: changeme, commfailure, commok, mainsback,
 and onbattery.

−−−−> Released apcupsd−3.8.0−pre3

APC UPS management under Linux

New Features in Apcupsd 3.8.0 206

mailto:apcupsd-devel at apcupsd.org
http://www.apcupsd.org
http://www.sibbald.com/apcupsd

 Applied Kern's diff, see techlogs/kes05Oct00
 Key points: fixes to Win32 binary release, manual updates,
 TIMEOUT bug fix, handle pre−1994 UPSes correctly,
 portability issues.

−−−−> Released winapcupsd−3.8.0−pre2 Win32 binarys only
 Applied Kern's corrections to the Win32 binary files.
 Fix to /win32/apccontrol.in
 Add sh.exe to \apcupsd\bin directory.

−−−−> Released apcupsd−3.8.0−pre−1.
 Applied Kern diffs, see techlogs/kes27Sep00
 Key points: Alpha Tru64 port, documentation updates,
 additional retries in networking, new STATUS variables,
 tighten permission of files, RedHat RPM spec, corrections
 to event scripts.

−−−−> Snapshot released 20000911.
 Applied Kern diffs, see techlogs/kes10Sep00
 Key points: Win32 enhancements, buffer overrun
 fix, tightning of file permissions, manual updates.

−−−−> Snapshot released 20000911.
 Applied Kern diffs, see techlog/kes10Sep00

−−−−> Snapshot released 20000910.
 WIN32 (cygwin) enhancements (KES): win'ization and use of system tray.
 Documentation update.
 autoconf reorganization.

−−−−> apcupsd−3.7.2 released.
 true and false programs are no more hardcoded into the configure script
 Reorganized some of the distributions/ Makefiles.
 Added FreeBSD installation support.

−−−−> Snapshot released 20000528
 Now apcaccess.c::stat_print() output status to stdout instead of stderr
 Reorganized the kill_* code in apcupsd.c::main()
 Removed the kill_ups_power argument from apcnet.c::kill_net()
 Moved all save_dumb_status() calls to apcserial.c::setup_serial()
 Applied kern's patch for kill_net in apcupsd.c and some other
 beautifications of the code.
 Changed scripts/autoregen.sh to compile with all the options switched o
 Added a web page of thanks to the html manual.
 Moved apcproctitle.c to lib/proctitle.c. Use that source only if
 there is not a system setproctitle(3).
 Don't use 's' subflag to ar(1). It's unnecessary since ranlib is
 being called, and more importantly not all ar implementations have it.
 Install distribution−specific apcupsd.conf files if they exist.
 Fixed some calls to open(2) that didn't specify file create modes.
 Added OpenBSD distribution and minor source patches.
 Modified Slackware distribution: Update README, patch instead of
 replacing rc files, delete obsolete distribution files.
 Updated "makediff" developers' tool.
 Minor manual updates.
 Updated again Developers file: we gained more *BSD help.
 Added the '−p' option to cmdline: was missing.
 Abort on killpower for slaves instead of simply exit, in apcupsd.c
 Removed nologin information from apcnet.c because we don't need. All th
 nologin file is managed by apcaction.c

APC UPS management under Linux

New Features in Apcupsd 3.8.0 207

−−−−> Snapshot released 20000511
 New mantainer for Slackware and OpenBSD ports: updated Developers file.
 Applied David patch for slackware
 Applied kern diffs, see techlogs/kes26Jan00
 po/POTFILES file is now removed by main Makefile since is always built.
 Corrected Slackware distribution Makefile.in: it was tied to
 /usr/src. Thanks to John McSwain.
 Corrected a bug in configure.in and include/apc_defines.h in which
 the nologin file was created in /etc/apcupsd/nologin instead of
 /etc/nologin.
 Moved README.solaris to doc/.
 Moved the patch "./1" to techlogs/kern−patch−17−Feb−2000

−−−−> apcupsd−3.7.1 released 17 February 2000
 Bumped version to 3.7.1 and released by Kern since Riccardo
 is on vacation.
 Update to upsbible.html to include additional credits.
 Fixed dumb UPSes, which did not work in version 3.7.0,
 see Kern's fixes techologs/kes12Feb00

−−−−> apcupsd−3.7.0 released.
 Bumped version to 3.7.0 and released.
 Powerflute: last 8 events are loaded from events file (if present).
 Revamped powerflute: now curses work correctly.
 Small fix to include/apc_config.h to clean Solaris compile.
 Clean intl/ a bit better.
 Fixed apcnetlib.c and apcnetd.c: now apcupsd compile under FreeBSD too.
 Applied kern diffs, see techlogs/kes26Jan00
 Fixed compile for Solaris 2.5.1.
 Added check for snprintf when CGI is configured in configure.in.
 Fixed internationalization inclusion when msgfmt is not found.
 Fixed warning in lib/getopt.c.
 Fixed AC_PATH_PROGS in configure.in.
 Verified clean compile under Linux and HP−UX.
 Added libintl and nls in information at the end of configure.
 Corrected stpcpy warning in intl/dcgettext.c.
 Changed all `make −C', this fixes HP−UX compilation of additional modules
 like internationalization and cgi support.
 Fixed detection of UP−UX version.
 In apcnetlib.c use memset instead of bzero.
 In apcupsd.c don't use TIOCNOTTY if not defined.
 Corrected a macro bug in arguments of setpgrp() call in apcupsd.

−−−−> apcupsd−3.7.0−rc1 released.
 Updated my e−mail and (C) signatures: if you want to make it simple,
 use vim and the scripts you can find in scripts/.
 Restructured include/apc.h inclusion order: now make more sense.
 Corrected setpgrp() call in apcupsd.c for BSD/non−BSD.
 Added FreeBSD to configure autodetection and placeholder in distributions/.
 Other minor fixes to Makefile.in and cgi/Makefile.in
 Fixed make clean for cgi.
 Applied kern diffs, see techlogs/kes17Jan00
 Added slackware scripts from John McSwain.
 Added Kern's fixes to distributions/redhat/awkhaltprog.in
 Applied kern diffs, see techlogs/kes16Jan00
 Added handling of `exit 0' at the end of halt.local as in suse 5.x.
 Added autodetection for SuSE 5.x.
 SuSE installation: written a shell script for installing apcupsd
 directives in /etc/rc.config.

−−−−> apcupsd−3.7.0−beta4 released.

APC UPS management under Linux

New Features in Apcupsd 3.8.0 208

 Bumped version to beta4 and released.
 Fixed a minor po/ problem.
 Applied kern diffs, see techlogs/kes13Jan00
 Applied kern diffs, see techlogs/kes12Jan00
 Fixed CYGWIN detection in configure.in.
 Added clean and distclean for distributions/.
 Added slackware detection but still manual installation (scripts
 generated but no actual installation performed: too dangerous doing
 the code without being able to test).

−−−−> apcupsd−3.7.0−beta3 released.
 Bumped version to beta3 and released.
 Applied kern diffs, see techlogs/kes09Jan00
 Changed clean_threads() in apcexec.c not hang on waitpid, and make
 sure we do all we can to kill the childs.
 Updated INSTALL file to make clear that prior to install a new version
 of apcupsd over an old version, is advisable to make uninstall.
 Corrected a syntax error in distributions/*/apccontrol.sh.in.
 Changed suse halt.local script to:
 . do something only if a powerdown is detected.
 . kill the processes before remounting read only the filesystems.
 Corrected a minor cosmetic (−Wall) in apcnetd.c
 Added −Wall to default CFLAGS.
 Applied kern diffs, see techlogs/kes06Jan00
 Kern minor changes to configure.in.
 Thanks to Tom Schroll, corrected an execv nasty error in apcexec.c.
 Applied kern diffs, see techlogs/kes30Dec99

−−−−> apcupsd−3.7.0−beta2 released.
 Bumped version to beta2 and released.
 Changed install−apcupsd target in main Makefile.in not to overwrite
 old apcupsd.conf file and instead create an apcupsd.conf.new file.
 Applied Kern diffs, see techlogs/kes19Dec99
 Changed the install to warn the user that if an old apcupsd.conf is in
 place, it is saved to apcupsd.conf.old.
 Applied Kern diffs, see techlogs/kes18Dec99.
 Reorganized the path construction in include/apc_defines.h so that now
 file paths are built with autoconf variables and not hardcoded.
 Applied Carl Erhorn patches for Solaris, see techlogs/cpe16Dec99.
 Now SuSE 5.2 is correctly detected (don't know previous versions).
 Cleanups of configure.in.
 Corrected a problem with SuSE and halt scripts where killpower where
 not issued correctly.
 Applied Helmut Messerer corrections.
 Applied Kern diffs, see techlogs/kes09Dec99
 Applied Kern diffs, see techlogs/kes08Dec99
 Added a new contrib/ directory where user contributed files are put.
 New user contribution for sending sms messages on UPS troubles.

−−−−> apcupsd−3.7.0−beta1 released.
 Applied Kern diffs, see techlogs/kes30Nov99
 Applied Kern diffs, see techlogs/kes28Nov99
 Applied Kern diffs, see techlogs/kes20Nov99
 Applied Kern diffs, see techlogs/kes18Nov99
 Applied Kern diffs, see techlogs/kes15Nov99
 More internationalization.
 Applied Kern diffs, see techlogs/kes13Nov99
 Moved TIOCM_LE HP−UX define and friends to include/apc_config.h
 Internationalization: internationalized and translated in Italian all the
 messages that are printed with printf and fprintf: more need to be done
 for error_* functions.

APC UPS management under Linux

New Features in Apcupsd 3.8.0 209

 Removed #ifdef wrapping around debug code and substituted with debug_level
 checks.
 Cleaned a remaining spit of `killpower' in apcupsd.c
 Help screen output to stdout.
 Now (C) and Brian's Support Center are visible in help screen output.
 Updates to the cgi files from Kern.
 Added a vimrc for TABs.
 −−debug argument changed meaning. Now is meant to be set to a number that
 range from 0 to N where increasing numbers means increasing debug output.
 Now we use getopt_long [see getopt(3)] for parsing command line.
 Documentation updates and reorganization: now `developers' documentation
 is in doc/developers/.
 Added support for cable 940−0095B.
 Applied Kern patches: syslog, getline, code cleanups, new cgi
 interface. Read his technical log in techlogs/kes03Nov99
 Added doc/CodingStyle file.
 Added Developers file.
 Some minor code documentation.
 Removed the "failed to reacquire the lockfile" problem. Now we release
 the lockfile just before fork() and reacquire it just after.
 More duplicated code cleanups and nasty bugs fixed in apcaction.c.
 SuSE's apcupsd start script now return green "done" and red "failed"
 (SuSE 6.2)
 apccontrol is installed in /etc/apcupsd/ because we need it when
 filesystems may be umounted.
 Removed powersc script: now it is all done in apccontrol and
 /etc/rc.d/apcupsd scripts.
 Moved _all_ the scripts into scripts/ directory (where they belong).
 apccontrol script installation dir is now sysconfdir
 ${prefix}/etc/apcupsd
 Simplified apcaction.c (removed duplicate code).
 Attempt to document some features of apcupsd.conf.
 Deleted two alarm()s related to apcreports.c from apcaction.c: this
 was a bug.
 Added setproctitle for setting forked procs's argv[0]. Now we have
 apcmain −> waiting for other tasks to exit, generic watchdog.
 apcser −> serial task
 apcact −> actions task
 apcnet −> network task
 apcslv −> netslave task
 so that now we can tell with a `ps' which task is doing what.
 apcserial+apcreports are now one single thread.
 Better locking scheme.
 Removed another nasty bug in Old* variables into apcaction.c. Now
 there is a local structure for these values.
 Removed a nasty bug in apcsetup.c.
 Updated man pages and apcupsd.conf.
 RedHat installation scripts.
 Removed 10 seconds sleep() from terminate().
 SHM ID for sanity checks on SHM accesses.
 Obsolete config options now generate only warnings.
 New error handling routines.
 doc/README.developers updated.
 Syslogging functions are bracketed with HAVE_GCC so that with gcc we
 can use macros and with other compilers we use functions for
 compatibility.
 Syslog functions are now real functions. There's no point in having
 incompatible preprocessor macros when a set of little functions can do
 the job.
 Fixed a next_slave label in apcnet.c with a semicolon for HPUX
 compiler.

APC UPS management under Linux

New Features in Apcupsd 3.8.0 210

 OS detection in configure: now Makefiles and sources know about which
 OS they are supposed to compile for.
 Better integration of lib/ sources into the configure mechanism.
 configure cleanups.
 Added cflags and ldflags selection in Makefile.in and configure.
 Fixed getopt_long detection in configure. Now if not found it compile
 the lib/ version.
 Now configure.in have a hardcoded PATH in which search the system
 programs needed.
 Lot of cleanups in global variables and code partitioning and
 duplication.
 More configure cleanups.
 Updated RH 6.0 halt script.
 Removed apchttp.
 Cleaned THREADS. Now forked processes are the only option.
 Various cleanups.
 SuSE−specific install/uninstall.
 All distribution specific directories are now in distributions/.
 All scripts are now in scripts/.
 Moved default apcupsd.conf in etc/.
 Added distribution−specific scripts installation.
 Install /etc/apcupsd.conf if not alredy present.
 Removed apc(un)install.sh: no more needed.
 Rewritten external scripts: no more system(), better customization
 support.
 Removed Makefile.in.in from po/: it's not needed.
 Fixed bogus −−enable and −−disable behavior of configure.
 Cleaned up po/ and intl/ autoconf.
 Only powerflute is linked with ncurses libraries.
 The program makedepend is not any more vital for compilation.

−−−−> apcupsd−3.6.2
 Fixed the "apcupsd −c" configure command.
 Fixed two thread bugs in alarm handling.
 Fixed two potential security exploits.
 More cleaned up autoconf.
 Random documentation cleanups.

−−−−> apcupsd−3.6.1
 Cleaned up new autoconf stuff from version 3.6.0
 Undefined a test flag for testing networks wierdness.
 #undef WACKY_NETWORK_ATTEMPS
 Network is fully functional under non−threaded compile.
 Possible fix for "pipe_master_status" calls on slaves.
 Added 940−1524C smart signal cable support.

−−−−> apcupsd−3.6.0
 Added autoconf.
 Added internationalization support. There is _only_ the support but
 no current code is written for the intl package. It can be compiled
 in, but intl strings have still to be translated (to be done in the
 future).
 Reorganized documentation.
 Reorganized support for distributions. Now we have a directory for
 every possible distribution (suse, unifix, debian etc etc) so that the
 job for the package−men can be easier.

−−−−> apcupsd−3.5.9
 Added new configuration options to reduce init time of daemon.
 powersc CONFIG
 powersc NAME

APC UPS management under Linux

New Features in Apcupsd 3.8.0 211

 powersc BATTERY

−−−−> apcupsd−3.5.8.patch

 Fixes a FIFO error that I forgot to include in the rush
 to release the code

−−−−> apcupsd−3.5.8

 GPL2 source code status finally...........April 7, 1999

 Threaded code is stable but requires glibc2 or libc6
 Finished SELFTEST setup
 Fixed naming of UPS if allowed.
 Redesigned "apcsetup.c" to allow for ease of parameter setup.

−−−−> apcupsd−3.5.7

 Added 940−0024G cable.
 "newbackupspro" to be replaced by "backupspropnp"

 If you have a BackUPS Pro UPS that is identified as
 BP(SIZE)(EXTRAS) examples BP420SC/BP650SC/BP650PRO−PnP,
 then you have a PnP BackUPS Pro that is very near a SmartUPS.
 Else anything with the identifier BK(SIZE)PRO or BKPRO(SIZE)
 is the very early version of the "dumbed down smartups".
 Unfortunately, it has very little to say. It is superior to the
 classic BackUPS (simple signals) in that it can at least tell event
 histories and if the batteries are faulted.

 now powerflute is compiling and working, needs THREADS

−−−−> apcupsd−3.5.6

 See Makefile for enabling flags.

 # New multi−threading code BETA
 #
 # THREADS = 1

 # New multi−threading code with http BETA functional needs THREADS
 #
 # HTTP = 1

 # New/Old powerflute tool
 #
 # MUSIC = 1

 dual building model possible complete.
 intergrated beta http data
 breakages in logs and procfs are still present in shm.
 code sorting and corrections.
 return of ncurses powerflute tool.
 fixed Makefile to find two possible locations of
 ncurses package; however, there are three methods for this animal.

 apcconfig.c: removed check for existance of lock directory. It's not
 needed and dangerous when −killpower !
 apcconfig.c: new configuration checks
 added semun definition to apc_struct.h since it is needed for glibc6

APC UPS management under Linux

New Features in Apcupsd 3.8.0 212

−−−−> apcupsd−3.5.5

 dual building model begun.
 intergrated beta shared memory mapping.
 breakages in logs and procfs are present.

−−−−> apcupsd−3.5.4

 Preparation for GPL status and transfer to GNU.
 Fixed Network bug.
 Fixed IPC PIPE bug.

−−−−> apcupsd−3.5.3

 Fixed UPS killpower bug.

−−−−> apcupsd−3.5.2

 Source wide reformat to conform to standard C programing format

−−−−> apcupsd−3.5.1

−−−−> apcupsd−3.5.0

 fixes "NO" reports in setup loops for UPSes that do not allow for
 changing parameters at initialization. Previously it was assumed that
 UPSes did not report anything if the feature was not pollable and/or
 changeble.

−−−−> apcupsd−3.4.9

 fixes a long missed error that was incorrectly fixed in the past.

−−−−> apcupsd−3.4.8

 solved more mystery functions and the UPSlink language may
 be completely decoded.

−−−−> apcupsd−3.4.7

 now auto−learns features based on UPS's answer to questions.
 initial porting to Solaris for i386 is complete.

−−−−> apcupsd−3.4.6 45493 Jul 15 13:14 apcupsd.c
 22326 Jul 9 12:50 apcnet.c
 12129 Jul 9 12:50 apcpipe.c
 25634 Jul 9 12:50 apcconfig.c
 8565 Jul 15 13:07 apcsetup.c
 11039 Jul 15 13:09 apcreports.c
 18137 Jul 15 13:19 apcsmart.c

 all logging functions will be moved to "apcreports.c"
 all smart mode calls will be moved to "apcsmart.c"
 fix ups model reporting in "apcsetup.c"

−−−−> apcupsd−3.4.5 77096 Jul 7 17:18 apcupsd.c
 22326 Jul 7 03:12 apcnet.c
 12129 Jun 22 15:12 apcpipe.c
 25634 Jul 7 16:39 apcconfig.c

APC UPS management under Linux

New Features in Apcupsd 3.8.0 213

 18477 Jul 7 02:08 apcaccess.c

 Added NOLOGON delay for systems with large Matrix UPSes.
 Short information polling, with constant values being set
 in the extended setup functions.

−−−−> apcupsd−3.4.4
 Fixed a missing and needed wait delay for netmaster systems.
 This was discovered when mixing flavors of Linux.
 Since SuSE, RHS, and Debain require extra time for shutdowns.
 man−page is closer to date..........

−−−−> apcupsd−3.4.3
 Added new limit features by polling a new command for
 internal calculated remaining time on line.
 Fixed naming UPS if allowed.

−−−−> apcupsd−3.4.2
 Fixed an unknown error for the forced ups−kill for the
 backupspro models. This was discovered with a new
 BackUPS Pro 1000.

−−−−> apcupsd−3.4.1
 Changed ./includes to have an "apc_" prefix.
 This is for initial port requirements to FreeBSD.

−−−−> apcupsd−3.4.0 72305 May 19 14:18 apcupsd.c
 21597 Apr 16 17:59 apcnet.c
 12117 Apr 16 15:44 apcpipe.c
 22832 Apr 16 15:42 apcconfig.c

 17687 Apr 16 13:47 apcaccess.c

Slave management disconnect/reconnect added to apcaccess.
Fixed excessive loss of UPS communications loggings of ::
 UPSlink Comm. Error, SM != SM
 UPSlink Comm. reestablished, SM == SM

Fixed Signal/Cable Combination errors.
 A "SmartUPS" with a "Simple Cable" with report as a "BackUPS".

−−−−> apcupsd−3.3.0 72450 Mar 20 01:09 apcupsd.c
 15321 Mar 20 01:08 apcnet.c
 11093 Mar 20 01:09 apcpipe.c
 22465 Mar 20 01:09 config.c

 17300 Mar 20 01:08 apcaccess.c

Network death solved (hopefully)
PowerFlute removed due to unexplainable daemon kills under 2.0.X. and
some cases of 2.1.X. (TCPIP)

This is replaced bye the original tool that now works "apcaccess".
"apcaccess" is functional under both 2.0.X and 2.1.X kernels without
killing the damon "apcupsd".

EPROM programming of many UPS models is now functional.

Example::

apcaccess : polling apcupsd for status.

APC UPS management under Linux

New Features in Apcupsd 3.8.0 214

APC : Mar 20 01:24:56
CABLE : APC Cable 940−0024B
UPSMODEL : SmartUPS
UPSMODE : Stand Alone
ULINE : 124.0 Volts
MLINE : 125.2 Volts
NLINE : 124.0 Volts
FLINE : 60.0 Hz
VOUTP : 124.0 Volts
LOUTP : 028.0
BOUTP : 27.3 Volts
BCHAR : 100.0
BFAIL : 0x08
SENSE : HIGH
WAKEUP : 060 Cycles
SLEEP : 020 Cycles
LOTRANS : 103.0 Volts
HITRANS : 129.0 Volts
CHARGE : 025.0 Percent
UTEMP : 49.5 C Internal
ALARM : Low Batt + 30
DIPSW : 0x0000

root at Orion% cat apcupsd.status
APC : Mar 20 01:27:31
CABLE : APC Cable 940−0024B
UPSMODEL : SmartUPS
UPSMODE : Stand Alone
UPSNAME : UPS_IDEN
ULINE : 124.0 Volts
MLINE : 124.6 Volts
NLINE : 124.0 Volts
FLINE : 60.0 Hz
VOUTP : 124.0 Volts
LOUTP : 028.0 Load Capacity
BOUTP : 27.3 Volts
BCHAR : 100.0 Batt. Charge
BFAIL : 0x08 Status Flag
SENSE : HIGH
WAKEUP : 060 Cycles
SLEEP : 020 Cycles
LOTRANS : 103.0 Volts
HITRANS : 129.0 Volts
CHARGE : 025.0 Percent
UTEMP : 49.5 C Internal
ALARM : Low Batt
DIPSW : 0x0000

−−−−> apcupsd−3.2.2 66556 Jan 27 15:24 apcupsd.c

Fixed a reporting error in /etc/apcupsd.status for CUSTOM SIMPLE cable.
Fixed a reporting error in /var/log/apcupsd.log for CUSTOM SIMPLE cable.

−−−−> apcupsd−3.2.1 67450 Jan 8 13:41 apcupsd.c

Fixed INSTALL from "readhat" to "redhat"
Fixed INSTALL errors of "slackware"

Bug search that causes network death, lost slaves under 2.0.X only??
Bug search that causes text−powerflute to kill daemon only under 2.0.X.

APC UPS management under Linux

New Features in Apcupsd 3.8.0 215

−−−−> apcupsd−3.2.0 66096 Dec 18 16:11 apcupsd.c

apcflute.c all code for reconfiguration complete.

−−−−> apcupsd−3.1.0 65925 Dec 8 21:18 apcupsd.c

−−−−> apcupsd−3.0.0

Now binaries only...........

−−−−> apcupsd−2.9.9 63431 Dec 3 13:05 apcupsd.c

Fixed "for (killcount=0;killcount>3;killcount++)" bug
 ^ killcount.

−−−−> apcupsd−2.9.8 62158 Nov 25 15:13 apcupsd.c

Added user defined magic and security timeouts.
Started powerflute update running master or standalone daemon.
Added another field for SmartUPS procfs file.

−−−−> apcupsd−2.9.7 60945 Nov 18 19:19 apcupsd.c

Added second alternate method for killing power for non SU SmartUPS.
I have one of these older models, and it needs a bigger kick.

Disable lockfiles if slave is a netslave with (ups−>cable == APC_NET),
or ethernet.

−−−−> apcupsd−2.9.6 60156 Nov 10 22:34 apcupsd.c

split source files...........

10885 Nov 10 20:40 apcnet.c :: NetUPS
18805 Nov 10 22:37 config.c :: configuration

5924 Nov 10 19:54 apcflute.c.src :: powerflute interface to apcupsd
5264 Nov 10 12:43 powerflute.c.src :: powerflute tcp management of apcupsd

Brian Schau added lockfiles for serial ports.

NetUPS or EtherUPS now works.
Needs more security likely, you can set your own TCP port number.
Will add user MAGIC at compile in the future.

−−−−> apcupsd−2.9.5 72431 Oct 28 00:27 apcupsd.c

Listing my hack of "powerflute". To enable it edit your /etc/apcupsd.conf
and set NETTIME to any value seconds is something to play around.

Reformat subroutines to get apcupsd to handle networks.

−−−−> apcupsd−2.9.4 70707 Oct 25 13:51 apcupsd.c

Smart V/S is in the same class as a BackUPS Pro.

Riccardo Facchetti has been volunteered to solve the
network part for the project. YEAH!!!!!!!!!!!!

Hello Andre,

APC UPS management under Linux

New Features in Apcupsd 3.8.0 216

I own a SmartUPS v/s and I have played a bit with your apcupsd. I have
found that the SmartUPS v/s command set is similar (if not equal) to the
one of BackUPS PRO, so I have changed the apcupsd.c code to behave this
way and seems to work well.

Another thing: I would like to have an application like powerchute. Of
course I am willing to write it, so I will call it powerflute.

My idea is:

apcupsd −> daemon
 − controls power status
 − listen on a TCP socket for incoming connections
 − get a command from TCP line
 − send the response to the command

powerflute −> application
 − connect to apcupsd
 − sends a command to apcupsd
 − get the response from apcupsd

apcupsd is listening to the socket with a select so it don't block. After
one or more connections are established, it read non−blocking from the TCP
file descriptor(s) and when a char is available, send it to UPS and
readline(), then send the buffer (terminated with '\n' to the TCP client
over the connection file descriptor.

You can note that I have protected apcupsd UPS monitoring from TCP
servicing by doing only non−blocking calls to the TCP layer, so there
should be no problem for it in detecting power problems without delay
caused by TCP connections.

A patch is enclosed for v/s == BKpro and for TCP servicing.
Of course this patch is still very preliminar, but I think it is a good
idea.

You can try the idea running the apcupsd with this patch applied,
telnetting to the port 6669 from localhost (no external connections
allowed now for security) and sending to the daemon some commands for the
UPS. The daemon will redirect them to the UPS and send the answer to you.
You can connect more than one client to the daemon (max 64 connections).

Please send me comments about it.

Ciao,
 Riccardo.
−−
Riccardo Facchetti | e−mail: riccardo at master.oasi.gpa.it

The TCP patch is not there but my hack job is present.
The package will have an addition called "powerflute".

−−−−> apcupsd−2.9.3 67655 Oct 23 14:57 apcupsd.c

Fixed spelling of "dissable" to "disable"
Forgot to add this function for ShareUPS.

int fillShareUPS(int sharefd, UPSINFO *ups);

Brian Schau with needed install changes in Makefile

APC UPS management under Linux

New Features in Apcupsd 3.8.0 217

for UNIFIX.

−−−−> apcupsd−2.9.2 67410 Oct 22 19:34 apcupsd.c

Changed "case" names in /etc/apcupsd.conf, again.....
This should be the last time...........

ShareUPS project maybe nearing an end.......

make install is almost done.

−−−−> apcupsd−2.9.1 65886 Oct 19 00:30 apcupsd.c

Changed "case" names in /etc/apcupsd.conf to lower case.
UPSTYPE SMARTUPS is now UPSTYPE smartups
Changed and add two new UPSMODE "cases" for ShareUPSes
Added Two new external call command for TIMEOUT and LOADLIMIT.
Shutdown types are now called by event not by a general shutdown.
Added CHANGEME to /sbin/powersc for SmartUPSes to announce that
its needs a batteries changed.

Tests are now run on (2) BackUPS 600's, SmartUPS Net 1400RM 700RM,
and SmartUPS 1250.

SmartUPSes now can call for shutdown based on percent of remaining
battery life or capacity.

Cleaned up manpage........

−−−−> apcupsd−2.9 58603 Oct 16 22:17 apcupsd.c

Changed to POSIX Style of control.
Now uses an external CONFIG file −> /etc/apcupsd.conf
All events are handled in the /sbin/powersc file, no more
sysvinit flavor hassels....................
Added ManPage, well an attempt.
Other things begun............

−−−−> apcupsd−2.8 42800 Oct 6 14:36 apcupsd.c

Finally solved the PLUG−N−PLAY Cable........
Tested on a BackUPS 600 and SmartUPS 700RM

Someone needs to test a BackUPS Pro........

If main power returns during a shutdown series, "apcupsd" will now reboot.

−−−−>
Better fix and support for #940−0023A cable, but still broke, drat.

−−−−>
Adds new code for UNIFIX Linux

−−−−> apcupsd−2.7.1 35902 Sep 3 21:38 apcupsd.c

By Chris:

More changes and fixes with Pro Series tested.
Better method of "walling" the console.
Minor debugging added.

APC UPS management under Linux

New Features in Apcupsd 3.8.0 218

ShareUPS Project Started, BETA.

−−−−> apcupsd−2.7 35413 Aug 14 15:50 apcupsd.c

TESTED on the following setups:

SLACKWARE SMP/NON−SMP (2.1.49) SmartUPS 700 BackUPS 600
REDHAT 4.1 SMP/NON−SMP (2.0.30) BackUPS 600
SUSE 5.0 SMP/NON−SMP (2.0.30) BackUPS 600

NOTE BackUPS Pro Series Untested at this time of release.

All UPSes can be time limited shutdown.

Fixed all possible killpower problems.....

Changed rc.power to include a NOW command.
Changed inittab file and added

What to do when battery power fails.
pn::powerfailnow:/etc/rc.d/rc.power now

Made changes for SuSE distribution.
Change /sbin/init.d/powerfail file

Chanages to CONFIG File

USE_SLACKWARE=yes
USE_REDHAT=no
USE_SUSE=no

Auto Updater

USE_MAKE_UPDATES=yes
USE_MAKE_INITTAB=yes

RedHat version for "powerstatus" file
REDHAT_VERSION=42

−−−−> apcupsd−2.6 35718 Jul 10 08:10 apcupsd.c

Added more info to apcupsd.maunal about special external controls.
SEE "6) OTHER" in apcupsd.maunal

−−−−> apcupsd−2.6.pre6 35718 Jul 10 08:10 apcupsd.c

Made changes in rc.power to become more universial.
Made N−th attempt to make use of APC cable #940−0095A "DRAT"
in "dumb mode". Will now try "smart mode".
"DOUBLE DRAT" APC has a new cable #940−0095C.
They just want to make things hard for us........
More Pro Fixes

S.u.S.e work around. This is a major DANGER!!!!
If you call /usr/sbin/apcupsd /dev/apcups killpower,
in a non−power problem situation.
"YOU WILL SCREW YOURSELF" this safe guard is a direct override
of the daemon.

−−−−> apcupsd−2.6.pre5a 36279 Jun 23 16:39 apcupsd.c

APC UPS management under Linux

New Features in Apcupsd 3.8.0 219

OOPS......forgot an "endif" in the distribution Makefile

−−−−> apcupsd−2.6.pre5 36279 Jun 23 16:39 apcupsd.c

Added Linux Flavor Dependencies in CONFIG file.
Fixed "nologin", so only root can login during a powerfailure.
All other attempts are defeated at the login prompt.

−−−−> apcupsd−2.6.pre4 35616 Jun 19 15:40 apcupsd.c

Possible RedHat 4.2 fix.

−−−−> apcupsd−2.6.pre3 35282 Jun 17 01:41 apcupsd.c

Fixes RedHat install and Makefile to make backup of files
to be changed during installation. Sorry about the mistake
RedHat users.

−−−−> apcupsd−2.6.pre2 35282 Jun 17 01:41 apcupsd.c

More Pro Fixes and stuff for RedHat install and Makefile

−−−−> apcupsd−2.6.pre1 35279 Jun 16 23:04 apcupsd.c

More Pro Fixes and stuff for RedHat install

−−−−> apcupsd−2.5 36558 Jun 1 19:41 apcupsd.c

More Pro Fixes and stuff for RedHat install

−−−−> apcupsd−2.5.pre4 35240 May 23 11:10 apcupsd.c

Can now re−init logfile at boot time with:
/{path}/apcupsd /dev/apcups newlog
This will help keep the log file from eating your root partition

940−0020B retested, fine
940−0095A untested −−−−−−!!BETA CODE!!−−−−−−−−

−−−−> apcupsd−2.5.pre3 34829 May 22 17:56 apcupsd.c

major bug check....sorry
tested on smart and back ups, not pro yet
940−0020B not retested yet

−−−−> apcupsd−2.5.pre2 28712 May 21 20:39 apcupsd.c

New logging features.

−−−−> apcupsd−2.5.pre

RedHat Support and Back UPS Pro Support via third party.
Christopher J. Reimer

−−−−> apcupsd−2.4 24409 May 19 14:17 apcupsd.c

Back UPS Pro BETA Support

Karsten Wiborg
Christopher J. Reimer

APC UPS management under Linux

New Features in Apcupsd 3.8.0 220

−−−−> apcupsd−2.3 21278 May 13 10:11 apcupsd.c

I made a patch to your apcupsd that allows it to be configured for
external commands to run (instead of the built−in wall). This allows me
to set it up to send out a call to my pager when the power fails, among
other things.

Anyway, here it is.
−−
Chris Adams − cadams at ro.com

not public release, yet.

−−−−> apcupsd−2.2 21275 May 8 12:53 apcupsd.c

Fixed psuedo procfs type status file in the /etc directory.
Now works for both SMART and DUMB MODE.

Eric Raymond
Redit of apcupsd.manual.

−−−−> apcupsd−2.1 20926 May 6 23:08 apcupsd.c

Jason Orendorf

"After building and installing the daemon init files I found
out why you #define the term _ANNOY_ME...it is rather annoying
to get 'wall'ed every 3 seconds − though I do think the
feature is important. I made a trivial modification to a few
files to make the time delay ('wall' frequency) configurable
at build time. If you haven't made this change yourself, feel
free to incorporate these changes into your development source
if you think it would be useful to others."

Eric Raymond

Edited APC_UPSD.README.1ST to apcupsd.manual.
Many thanks.

Finally added psuedo procfs type status file in the /etc directory.
Broken for DUMB MODE

−−−−> apcupsd−2.0 20119 May 2 17:36 apcupsd.c

Name change to help sunsite.unc.edu "keeper" daemon.

Black Cables #940−0024B and #940−0024C are now supported for APC SmartUPS.
They have been tested on an APC SmartUPS SU700/1400RM. I don't know if
it will work on APC BackUPS Pro Series.......
Tested SmartUPS SU700RM with SMNP PowerNet(tm) card and SmartMode i/o
through DB−9 port with 940−0024B and #940−0024C. This means that you
can SMNP manage your SmartUPS with SMNP PowerNet(tm) card. You must have
your own SMNP software..........
Added /proc/apcupsd file for pseudo procfs info.
Deleted announce aka −D_ANNOY_ME, for pseudo procfs info file.

Borrowed a bunch of code for Smart−UPS from Pavel Korensky's apcd.c apcd.h.

−−−−> Enhanced−APC−UPS v1.9 April 17, 1997

APC UPS management under Linux

New Features in Apcupsd 3.8.0 221

Name change to help sunsite.unc.edu "keeper" daemon.

−−−−> Enhanced_APC_UPS v1.9 Apr 14 15:02 apc_upsd.c

bug found by Tom Kunicki
"I still can cause the UPS to shutoff with a power disturbance by
 typing 'apc_upsd /dev/apc_ups killpower' before the disturbance." ... "
 Maybe you could disable the 'killpower' switch except for when the UPS
 is in the condition where it is supposed to be used..."

I have tested my BackUPS cable on the following and it works as designed:
 APC BackUPS 400, APC BackUPS 600, and APC SmartUPS SU1400RM.
I have tested APC's cable #940−0020B on the following and it works as designed:
 APC BackUPS 400, APC BackUPS 600, and APC SmartUPS SU1400RM.
I have NOT tested a BackUPS Pro, since I don't have one yet.

NOTE: My SmartUPS CABLE has broken code and more likely a broken cable design.

Black Cables #940−0024B and #940−0024C are still in the works but not high
priority, yet.

−−−−> Enhanced_APC_UPS v1.8 Apr 8 00:06 apc_upsd.c

Corrected defines in code for 940−0020B, 940−0023A, and 940−0095A.
−D_SMARTUPS can no longer be define if you select USE_APC=yes
There is no SmartUPS "Smart Mode" support, it has never been available.
I am waiting to hear from APC about pinouts for the following cables
#940−0023A their Unix OS cable and
#940−0095A their Win95OS cable.
If you want to use and APC cable, you must have cable #940−0020B ONLY....

Deleted Enhanced_APC_BackUPS.tar.gz from distribution.
Deleted rc.apc_power, all cables use rc.power.

Not publically released at sunsite.unc.edu

−−−−> Enhanced_APC_UPS v1.7g−fix Apr 3 17:42 Makefile

Error in Makefile, rc.apc_power is for testing APC SmartUPS "black" cable.
All installs should use rc.power only, I forgot to make this change in the
distribution Makefile from the Master Makefile.

−−−−> Enhanced_APC_UPS v1.7g Apr 1 15:31 apc_upsd.c

Possible FULL support for Grey cable APC# 940−0020B for BackUPS only
There still may be a bug like the original Enhanced_APC_BackUPS v1.0,
but has not shown it face yet after FIVE (5) forced power outages.

NO SUPPORT YET: Black cable APC# 940−0024B for SmartUPS BackUPS PRO only
This is take MUCH longer.......I don't have either SmartUPS BackUPS PRO to
test with, but can simulate the effect of PIN#8 on a BackUPS 400 and 600.

−−−−> Enhanced_APC_UPS v1.6b Mar 31 22:03 apc_upsd.c

Added USE_APC in CONFIG for using APC cables
Added for using APC cables rc.apc_power
Basic support like original three−wire daemon.

Black cable APC# 940−0024B for SmartUPS and BackUPS PRO only
Grey cable APC# 940−0020B for BackUPS only

APC UPS management under Linux

New Features in Apcupsd 3.8.0 222

VERY BETA......REPEAT, VERY BETA!!!!, ALMOST ALPHA........

Not publically released at sunsite.unc.edu

−−−−> Enhanced_APC_UPS v1.5 Mar 31 12:07 apc_upsd.c

Fixed a possible bug on the SmartUPS side of the daemon.
Retested cable design for "Andreas vasquez Mack"
Soon to test "black APC cable" for "Kofi N. Agyemang" and
 "Pete Rylko"
APC Black Cable Support soon v1.6?

−−−−> Enhanced_APC_UPS v1.4 Mar 1 17:18 apc_upsd.c

Added ANNOUNCE defeat in CONFIG

−−−−> Enhanced_APC_UPS v1.3 Mar 1 16:41 apc_upsd.c

Fixed bug with momentary power outage less than 10 seconds with announce.
That darn announce.......
Added original Enhanced_APC_BackUPS package to distribution.
Never released........

−−−−> Enhanced_APC_UPS v1.2 Mar 1 15:46 apc_upsd.c

Fixed a loop order bug.
It now release the power problems message after power returns.

−−−−> Enhanced_APC_UPS v1.1 Feb 28 16:25 apc_upsd.c

Copied new dowall.c from Sysvinit−2.69.
Added support for SmartUPS (non−Smart Accessories Port).
Fixed the above problem of repeated power failures.
Added cable design for SmartUPS (non−Smart Accessories Port).

−−−−> Enhanced_APC_BackUPS v1.0 Sep 20 01:52 backupsd.c

Known Bug in special power situations. IFF (if and only if) the following
happens will this daemon fail to do its job.

If your power fails long enough to cause "backupsd" to activate and cleanly
shutdown your Linux−Box, and returns later only breifly.

(That is long enough for the UPS to clear the KILL_POWER_BIT and causes)
(your Linux−Box to reboot. But not long enough to recharge you UPS's)
(battery above the low−battery latch state, and power fails again. The)
(daemon cannot currently catch the status change.)

I have never had this happen to me ever, but I can force this to happen
under laboratory test conditions. You can too, but it is not advised.
Your filesystem will say "!@#$%#$*and much more to you.

Thanks for the support and use of this daemon.

hedrick at astro.dyer.vanderbilt.edu
Andre Hedrick

http://www.brisse.dk/site/apcupsd/

APC UPS management under Linux

New Features in Apcupsd 3.8.0 223

APC UPS management under Linux

New Features in Apcupsd 3.8.0 224

Upgrading to Apcupsd 3.7.1

Quite a number of the configuration statements have changed between versions 3.6.2 and 3.7.1, so you should
either take the new apcupsd.conf file and modify it, or update your existing file. In general, we recommend
starting with the new file.

If you have used a prior version of apcupsd, the CONTROL script file (/sbin/powersc) has now been replaced
by /etc/apcupsd/apccontrol. Consequently, the CONTROL configuration statement is obsolete. The following
configuration statements have been replaced by scripts called from /etc/apcupsd/apccontrol, and thus are
obsolete: BATTCMD, LIMITCMN, LOADCMD, PWRCMD, REBOOTCMD, REMOTECMD, RETCMD,
and TIMECMD.

On most systems the script that started and stopped apcupsd was called apcups. In versions 3.7.0 and later,
this script has been renamed to apcupsd.

If you use the master/slave networking code, please be aware that the Apcupsd 3.7.1 network protocol is not
compatible with prior versions. Thus to use master/slave networking, you must upgrade your master and all
the slaves at the same time.

Since there are now a number of script files and data files used by apcupsd, they have been moved from their
previous locations to the directory /etc/apcupsd. The executable files (apcupsd, apcaccess, ...) remain in
their prior locations (normally /usr/sbin or /sbin depending on your configuration).

With this release, there are four Web CGI programs (multimon.cgi, upsstats.cgi, upsfstats.cgi, and
upsimage.cgi). To have them properly installed, you must run the ./configure command with −−enable−cgi
and you must specify an installation directory with −−with−cgi−bin= or load them manually.

APC UPS management under Linux

Upgrading to Apcupsd 3.7.1 225

New Features in Apcupsd 3.7.2

Version 3.7.2 is a bug fix release, and the changes primarily concerned the non−smart UPSes (sometimes
referred to as dumb UPSes.

New Features in Apcupsd 3.7.1

This version of apcupsd, thanks to the efforts of Andre H. Hedrick, Brian Schau, Kern Sibbald and many
others has been almost rewritten. Many thanks have to be addressed to APC people that not only have
allowed, on April 7 1999, the release of apcupsd under the GPL license, they also offered their technical help
to the developers. Thank you !

Apcupsd is a daemon for monitoring APC UPSes. It is able to detect power loss and shutdown the computer if
the UPS battery power is getting too low. It is able to shutdown multiple computers powered by a single UPS
by running one computer as the master and the others as slaves. The master communicates to the slaves
sending them messages by the network.

· Highlights of this release.

. New CGI interface to see the UPS status over the web

. New network interface to publish to clients the UPS status

. New master/server network code that is more fault tolerant

. Internationalization

. Use GNU getopt

. Logging on syslog

. Events logged in a file like APC's PowerChute

. Sync code removed: now only async processes are used

. Better automated installation

. Updated documentation (HTTP version)

. Bug fixes and enhancements: too many to tell them all

The software is completely developed under Linux and will compile cleanly and will work under Linux.
Porting is being addressed for Solaris and HP−UX, where the actual code should compile cleanly. If you own
an APC UPS attached to a Linux machine or you want to realize a setup like this, or you are already an user of
older version of apcupsd, please upgrade to the latest version. We need testers and any bug reports will be
more than welcome. ·

What to do if you find bugs :

send an e−mail to riccardo at master.oasi.gpa.it (Project Manager and main developer) or send an e−mail to
apcupsd−devel at apcupsd.org (Developers mailing list) or go to one of the following sites:

http://www.apcupsd.org
http://www.sibbald.com/apcupsd
Apcupsd Support Center http://www.brisse.dk/site/apcupsd/

Change Log

/***/
/* ChangeLog of apcupsd */
/* Riccardo Facchetti <riccardo at master.oasi.gpa.it> */
/* http://www.apcupsd.org */
/* http://www.sibbald.com/apcupsd */

APC UPS management under Linux

New Features in Apcupsd 3.7.2 226

mailto:apcupsd-devel at apcupsd.org
http://www.apcupsd.org
http://www.sibbald.com/apcupsd
http://www.brisse.dk/site/apcupsd/

/* ftp://ftp.apcupsd.org/pub/apcupsd */
/***/

−−−−> apcupsd−3.7.2 released.
 true and false programs are no more hardcoded into the configure script
 Reorganized some of the distributions/ Makefiles.
 Added FreeBSD installation support.

−−−−> Snapshot released 20000528
 Now apcaccess.c::stat_print() output status to stdout instead of stderr
 Reorganized the kill_* code in apcupsd.c::main()
 Removed the kill_ups_power argument from apcnet.c::kill_net()
 Moved all save_dumb_status() calls to apcserial.c::setup_serial()
 Applied kern's patch for kill_net in apcupsd.c and some other
 beautifications of the code.
 Changed scripts/autoregen.sh to compile with all the options switched o
 Added a web page of thanks to the html manual.
 Moved apcproctitle.c to lib/proctitle.c. Use that source only if
 there is not a system setproctitle(3).
 Don't use 's' subflag to ar(1). It's unnecessary since ranlib is
 being called, and more importantly not all ar implementations have it.
 Install distribution−specific apcupsd.conf files if they exist.
 Fixed some calls to open(2) that didn't specify file create modes.
 Added OpenBSD distribution and minor source patches.
 Modified Slackware distribution: Update README, patch instead of
 replacing rc files, delete obsolete distribution files.
 Updated "makediff" developers' tool.
 Minor manual updates.
 Updated again Developers file: we gained more *BSD help.
 Added the '−p' option to cmdline: was missing.
 Abort on killpower for slaves instead of simply exit, in apcupsd.c
 Removed nologin information from apcnet.c because we don't need. All th
 nologin file is managed by apcaction.c

−−−−> Snapshot released 20000511
 New mantainer for Slackware and OpenBSD ports: updated Developers file.
 Applied David patch for slackware
 Applied kern diffs, see techlogs/kes26Jan00
 po/POTFILES file is now removed by main Makefile since is always built.
 Corrected Slackware distribution Makefile.in: it was tied to
 /usr/src. Thanks to John McSwain.
 Corrected a bug in configure.in and include/apc_defines.h in which
 the nologin file was created in /etc/apcupsd/nologin instead of
 /etc/nologin.
 Moved README.solaris to doc/.
 Moved the patch "./1" to techlogs/kern−patch−17−Feb−2000

−−−−> apcupsd−3.7.1 released 17 February 2000
 Bumped version to 3.7.1 and released by Kern since Riccardo
 is on vacation.
 Update to upsbible.html to include additional credits.
 Fixed dumb UPSes, which did not work in version 3.7.0,
 see Kern's fixes techologs/kes12Feb00

−−−−> apcupsd−3.7.0 released.
 Bumped version to 3.7.0 and released.
 Powerflute: last 8 events are loaded from events file (if present).
 Revamped powerflute: now curses work correctly.
 Small fix to include/apc_config.h to clean Solaris compile.
 Clean intl/ a bit better.
 Fixed apcnetlib.c and apcnetd.c: now apcupsd compile under FreeBSD too.

APC UPS management under Linux

New Features in Apcupsd 3.7.2 227

 Applied kern diffs, see techlogs/kes26Jan00
 Fixed compile for Solaris 2.5.1.
 Added check for snprintf when CGI is configured in configure.in.
 Fixed internationalization inclusion when msgfmt is not found.
 Fixed warning in lib/getopt.c.
 Fixed AC_PATH_PROGS in configure.in.
 Verified clean compile under Linux and HP−UX.
 Added libintl and nls in information at the end of configure.
 Corrected stpcpy warning in intl/dcgettext.c.
 Changed all `make −C', this fixes HP−UX compilation of additional modules
 like internationalization and cgi support.
 Fixed detection of UP−UX version.
 In apcnetlib.c use memset instead of bzero.
 In apcupsd.c don't use TIOCNOTTY if not defined.
 Corrected a macro bug in arguments of setpgrp() call in apcupsd.

−−−−> apcupsd−3.7.0−rc1 released.
 Updated my e−mail and (C) signatures: if you want to make it simple,
 use vim and the scripts you can find in scripts/.
 Restructured include/apc.h inclusion order: now make more sense.
 Corrected setpgrp() call in apcupsd.c for BSD/non−BSD.
 Added FreeBSD to configure autodetection and placeholder in distributions/.
 Other minor fixes to Makefile.in and cgi/Makefile.in
 Fixed make clean for cgi.
 Applied kern diffs, see techlogs/kes17Jan00
 Added slackware scripts from John McSwain.
 Added Kern's fixes to distributions/redhat/awkhaltprog.in
 Applied kern diffs, see techlogs/kes16Jan00
 Added handling of `exit 0' at the end of halt.local as in suse 5.x.
 Added autodetection for SuSE 5.x.
 SuSE installation: written a shell script for installing apcupsd
 directives in /etc/rc.config.

−−−−> apcupsd−3.7.0−beta4 released.
 Bumped version to beta4 and released.
 Fixed a minor po/ problem.
 Applied kern diffs, see techlogs/kes13Jan00
 Applied kern diffs, see techlogs/kes12Jan00
 Fixed CYGWIN detection in configure.in.
 Added clean and distclean for distributions/.
 Added slackware detection but still manual installation (scripts
 generated but no actual installation performed: too dangerous doing
 the code without being able to test).

−−−−> apcupsd−3.7.0−beta3 released.
 Bumped version to beta3 and released.
 Applied kern diffs, see techlogs/kes09Jan00
 Changed clean_threads() in apcexec.c not hang on waitpid, and make
 sure we do all we can to kill the childs.
 Updated INSTALL file to make clear that prior to install a new version
 of apcupsd over an old version, is advisable to make uninstall.
 Corrected a syntax error in distributions/*/apccontrol.sh.in.
 Changed suse halt.local script to:
 . do something only if a powerdown is detected.
 . kill the processes before remounting read only the filesystems.
 Corrected a minor cosmetic (−Wall) in apcnetd.c
 Added −Wall to default CFLAGS.
 Applied kern diffs, see techlogs/kes06Jan00
 Kern minor changes to configure.in.
 Thanks to Tom Schroll, corrected an execv nasty error in apcexec.c.
 Applied kern diffs, see techlogs/kes30Dec99

APC UPS management under Linux

New Features in Apcupsd 3.7.2 228

−−−−> apcupsd−3.7.0−beta2 released.
 Bumped version to beta2 and released.
 Changed install−apcupsd target in main Makefile.in not to overwrite
 old apcupsd.conf file and instead create an apcupsd.conf.new file.
 Applied Kern diffs, see techlogs/kes19Dec99
 Changed the install to warn the user that if an old apcupsd.conf is in
 place, it is saved to apcupsd.conf.old.
 Applied Kern diffs, see techlogs/kes18Dec99.
 Reorganized the path construction in include/apc_defines.h so that now
 file paths are built with autoconf variables and not hardcoded.
 Applied Carl Erhorn patches for Solaris, see techlogs/cpe16Dec99.
 Now SuSE 5.2 is correctly detected (don't know previous versions).
 Cleanups of configure.in.
 Corrected a problem with SuSE and halt scripts where killpower where
 not issued correctly.
 Applied Helmut Messerer corrections.
 Applied Kern diffs, see techlogs/kes09Dec99
 Applied Kern diffs, see techlogs/kes08Dec99
 Added a new contrib/ directory where user contributed files are put.
 New user contribution for sending sms messages on UPS troubles.

−−−−> apcupsd−3.7.0−beta1 released.
 Applied Kern diffs, see techlogs/kes30Nov99
 Applied Kern diffs, see techlogs/kes28Nov99
 Applied Kern diffs, see techlogs/kes20Nov99
 Applied Kern diffs, see techlogs/kes18Nov99
 Applied Kern diffs, see techlogs/kes15Nov99
 More internationalization.
 Applied Kern diffs, see techlogs/kes13Nov99
 Moved TIOCM_LE HP−UX define and friends to include/apc_config.h
 Internationalization: internationalized and translated in Italian all the
 messages that are printed with printf and fprintf: more need to be done
 for error_* functions.
 Removed #ifdef wrapping around debug code and substituted with debug_level
 checks.
 Cleaned a remaining spit of `killpower' in apcupsd.c
 Help screen output to stdout.
 Now (C) and Brian's Support Center are visible in help screen output.
 Updates to the cgi files from Kern.
 Added a vimrc for TABs.
 −−debug argument changed meaning. Now is meant to be set to a number that
 range from 0 to N where increasing numbers means increasing debug output.
 Now we use getopt_long [see getopt(3)] for parsing command line.
 Documentation updates and reorganization: now `developers' documentation
 is in doc/developers/.
 Added support for cable 940−0095B.
 Applied Kern patches: syslog, getline, code cleanups, new cgi
 interface. Read his technical log in techlogs/kes03Nov99
 Added doc/CodingStyle file.
 Added Developers file.
 Some minor code documentation.
 Removed the "failed to reacquire the lockfile" problem. Now we release
 the lockfile just before fork() and reacquire it just after.
 More duplicated code cleanups and nasty bugs fixed in apcaction.c.
 SuSE's apcupsd start script now return green "done" and red "failed"
 (SuSE 6.2)
 apccontrol is installed in /etc/apcupsd/ because we need it when
 filesystems may be umounted.
 Removed powersc script: now it is all done in apccontrol and
 /etc/rc.d/apcupsd scripts.

APC UPS management under Linux

New Features in Apcupsd 3.7.2 229

 Moved _all_ the scripts into scripts/ directory (where they belong).
 apccontrol script installation dir is now sysconfdir
 ${prefix}/etc/apcupsd
 Simplified apcaction.c (removed duplicate code).
 Attempt to document some features of apcupsd.conf.
 Deleted two alarm()s related to apcreports.c from apcaction.c: this
 was a bug.
 Added setproctitle for setting forked procs's argv[0]. Now we have
 apcmain −> waiting for other tasks to exit, generic watchdog.
 apcser −> serial task
 apcact −> actions task
 apcnet −> network task
 apcslv −> netslave task
 so that now we can tell with a `ps' which task is doing what.
 apcserial+apcreports are now one single thread.
 Better locking scheme.
 Removed another nasty bug in Old* variables into apcaction.c. Now
 there is a local structure for these values.
 Removed a nasty bug in apcsetup.c.
 Updated man pages and apcupsd.conf.
 RedHat installation scripts.
 Removed 10 seconds sleep() from terminate().
 SHM ID for sanity checks on SHM accesses.
 Obsolete config options now generate only warnings.
 New error handling routines.
 doc/README.developers updated.
 Syslogging functions are bracketed with HAVE_GCC so that with gcc we
 can use macros and with other compilers we use functions for
 compatibility.
 Syslog functions are now real functions. There's no point in having
 incompatible preprocessor macros when a set of little functions can do
 the job.
 Fixed a next_slave label in apcnet.c with a semicolon for HPUX
 compiler.
 OS detection in configure: now Makefiles and sources know about which
 OS they are supposed to compile for.
 Better integration of lib/ sources into the configure mechanism.
 configure cleanups.
 Added cflags and ldflags selection in Makefile.in and configure.
 Fixed getopt_long detection in configure. Now if not found it compile
 the lib/ version.
 Now configure.in have a hardcoded PATH in which search the system
 programs needed.
 Lot of cleanups in global variables and code partitioning and
 duplication.
 More configure cleanups.
 Updated RH 6.0 halt script.
 Removed apchttp.
 Cleaned THREADS. Now forked processes are the only option.
 Various cleanups.
 SuSE−specific install/uninstall.
 All distribution specific directories are now in distributions/.
 All scripts are now in scripts/.
 Moved default apcupsd.conf in etc/.
 Added distribution−specific scripts installation.
 Install /etc/apcupsd.conf if not alredy present.
 Removed apc(un)install.sh: no more needed.
 Rewritten external scripts: no more system(), better customization
 support.
 Removed Makefile.in.in from po/: it's not needed.
 Fixed bogus −−enable and −−disable behavior of configure.

APC UPS management under Linux

New Features in Apcupsd 3.7.2 230

 Cleaned up po/ and intl/ autoconf.
 Only powerflute is linked with ncurses libraries.
 The program makedepend is not any more vital for compilation.

−−−−> apcupsd−3.6.2
 Fixed the "apcupsd −c" configure command.
 Fixed two thread bugs in alarm handling.
 Fixed two potential security exploits.
 More cleaned up autoconf.
 Random documentation cleanups.

−−−−> apcupsd−3.6.1
 Cleaned up new autoconf stuff from version 3.6.0
 Undefined a test flag for testing networks wierdness.
 #undef WACKY_NETWORK_ATTEMPS
 Network is fully functional under non−threaded compile.
 Possible fix for "pipe_master_status" calls on slaves.
 Added 940−1524C smart signal cable support.

−−−−> apcupsd−3.6.0
 Added autoconf.
 Added internationalization support. There is _only_ the support but
 no current code is written for the intl package. It can be compiled
 in, but intl strings have still to be translated (to be done in the
 future).
 Reorganized documentation.
 Reorganized support for distributions. Now we have a directory for
 every possible distribution (suse, unifix, debian etc etc) so that the
 job for the package−men can be easier.

−−−−> apcupsd−3.5.9
 Added new configuration options to reduce init time of daemon.
 powersc CONFIG
 powersc NAME
 powersc BATTERY

−−−−> apcupsd−3.5.8.patch

 Fixes a FIFO error that I forgot to include in the rush
 to release the code

−−−−> apcupsd−3.5.8

 GPL2 source code status finally...........April 7, 1999

 Threaded code is stable but requires glibc2 or libc6
 Finished SELFTEST setup
 Fixed naming of UPS if allowed.
 Redesigned "apcsetup.c" to allow for ease of parameter setup.

−−−−> apcupsd−3.5.7

 Added 940−0024G cable.
 "newbackupspro" to be replaced by "backupspropnp"

 If you have a BackUPS Pro UPS that is identified as
 BP(SIZE)(EXTRAS) examples BP420SC/BP650SC/BP650PRO−PnP,
 then you have a PnP BackUPS Pro that is very near a SmartUPS.
 Else anything with the identifier BK(SIZE)PRO or BKPRO(SIZE)
 is the very early version of the "dumbed down smartups".
 Unfortunately, it has very little to say. It is superior to the

APC UPS management under Linux

New Features in Apcupsd 3.7.2 231

 classic BackUPS (simple signals) in that it can at least tell event
 histories and if the batteries are faulted.

 now powerflute is compiling and working, needs THREADS

−−−−> apcupsd−3.5.6

 See Makefile for enabling flags.

 # New multi−threading code BETA
 #
 # THREADS = 1

 # New multi−threading code with http BETA functional needs THREADS
 #
 # HTTP = 1

 # New/Old powerflute tool
 #
 # MUSIC = 1

 dual building model possible complete.
 intergrated beta http data
 breakages in logs and procfs are still present in shm.
 code sorting and corrections.
 return of ncurses powerflute tool.
 fixed Makefile to find two possible locations of
 ncurses package; however, there are three methods for this animal.

 apcconfig.c: removed check for existance of lock directory. It's not
 needed and dangerous when −killpower !
 apcconfig.c: new configuration checks
 added semun definition to apc_struct.h since it is needed for glibc6

−−−−> apcupsd−3.5.5

 dual building model begun.
 intergrated beta shared memory mapping.
 breakages in logs and procfs are present.

−−−−> apcupsd−3.5.4

 Preparation for GPL status and transfer to GNU.
 Fixed Network bug.
 Fixed IPC PIPE bug.

−−−−> apcupsd−3.5.3

 Fixed UPS killpower bug.

−−−−> apcupsd−3.5.2

 Source wide reformat to conform to standard C programing format

−−−−> apcupsd−3.5.1

−−−−> apcupsd−3.5.0

 fixes "NO" reports in setup loops for UPSes that do not allow for
 changing parameters at initialization. Previously it was assumed that

APC UPS management under Linux

New Features in Apcupsd 3.7.2 232

 UPSes did not report anything if the feature was not pollable and/or
 changeble.

−−−−> apcupsd−3.4.9

 fixes a long missed error that was incorrectly fixed in the past.

−−−−> apcupsd−3.4.8

 solved more mystery functions and the UPSlink language may
 be completely decoded.

−−−−> apcupsd−3.4.7

 now auto−learns features based on UPS's answer to questions.
 initial porting to Solaris for i386 is complete.

−−−−> apcupsd−3.4.6 45493 Jul 15 13:14 apcupsd.c
 22326 Jul 9 12:50 apcnet.c
 12129 Jul 9 12:50 apcpipe.c
 25634 Jul 9 12:50 apcconfig.c
 8565 Jul 15 13:07 apcsetup.c
 11039 Jul 15 13:09 apcreports.c
 18137 Jul 15 13:19 apcsmart.c

 all logging functions will be moved to "apcreports.c"
 all smart mode calls will be moved to "apcsmart.c"
 fix ups model reporting in "apcsetup.c"

−−−−> apcupsd−3.4.5 77096 Jul 7 17:18 apcupsd.c
 22326 Jul 7 03:12 apcnet.c
 12129 Jun 22 15:12 apcpipe.c
 25634 Jul 7 16:39 apcconfig.c

 18477 Jul 7 02:08 apcaccess.c

 Added NOLOGON delay for systems with large Matrix UPSes.
 Short information polling, with constant values being set
 in the extended setup functions.

−−−−> apcupsd−3.4.4
 Fixed a missing and needed wait delay for netmaster systems.
 This was discovered when mixing flavors of Linux.
 Since SuSE, RHS, and Debain require extra time for shutdowns.
 man−page is closer to date..........

−−−−> apcupsd−3.4.3
 Added new limit features by polling a new command for
 internal calculated remaining time on line.
 Fixed naming UPS if allowed.

−−−−> apcupsd−3.4.2
 Fixed an unknown error for the forced ups−kill for the
 backupspro models. This was discovered with a new
 BackUPS Pro 1000.

−−−−> apcupsd−3.4.1
 Changed ./includes to have an "apc_" prefix.
 This is for initial port requirements to FreeBSD.

−−−−> apcupsd−3.4.0 72305 May 19 14:18 apcupsd.c

APC UPS management under Linux

New Features in Apcupsd 3.7.2 233

 21597 Apr 16 17:59 apcnet.c
 12117 Apr 16 15:44 apcpipe.c
 22832 Apr 16 15:42 apcconfig.c

 17687 Apr 16 13:47 apcaccess.c

Slave management disconnect/reconnect added to apcaccess.
Fixed excessive loss of UPS communications loggings of ::
 UPSlink Comm. Error, SM != SM
 UPSlink Comm. reestablished, SM == SM

Fixed Signal/Cable Combination errors.
 A "SmartUPS" with a "Simple Cable" with report as a "BackUPS".

−−−−> apcupsd−3.3.0 72450 Mar 20 01:09 apcupsd.c
 15321 Mar 20 01:08 apcnet.c
 11093 Mar 20 01:09 apcpipe.c
 22465 Mar 20 01:09 config.c

 17300 Mar 20 01:08 apcaccess.c

Network death solved (hopefully)
PowerFlute removed due to unexplainable daemon kills under 2.0.X. and
some cases of 2.1.X. (TCPIP)

This is replaced bye the original tool that now works "apcaccess".
"apcaccess" is functional under both 2.0.X and 2.1.X kernels without
killing the damon "apcupsd".

EPROM programming of many UPS models is now functional.

Example::

apcaccess : polling apcupsd for status.

APC : Mar 20 01:24:56
CABLE : APC Cable 940−0024B
UPSMODEL : SmartUPS
UPSMODE : Stand Alone
ULINE : 124.0 Volts
MLINE : 125.2 Volts
NLINE : 124.0 Volts
FLINE : 60.0 Hz
VOUTP : 124.0 Volts
LOUTP : 028.0
BOUTP : 27.3 Volts
BCHAR : 100.0
BFAIL : 0x08
SENSE : HIGH
WAKEUP : 060 Cycles
SLEEP : 020 Cycles
LOTRANS : 103.0 Volts
HITRANS : 129.0 Volts
CHARGE : 025.0 Percent
UTEMP : 49.5 C Internal
ALARM : Low Batt + 30
DIPSW : 0x0000

root at Orion% cat apcupsd.status
APC : Mar 20 01:27:31
CABLE : APC Cable 940−0024B

APC UPS management under Linux

New Features in Apcupsd 3.7.2 234

UPSMODEL : SmartUPS
UPSMODE : Stand Alone
UPSNAME : UPS_IDEN
ULINE : 124.0 Volts
MLINE : 124.6 Volts
NLINE : 124.0 Volts
FLINE : 60.0 Hz
VOUTP : 124.0 Volts
LOUTP : 028.0 Load Capacity
BOUTP : 27.3 Volts
BCHAR : 100.0 Batt. Charge
BFAIL : 0x08 Status Flag
SENSE : HIGH
WAKEUP : 060 Cycles
SLEEP : 020 Cycles
LOTRANS : 103.0 Volts
HITRANS : 129.0 Volts
CHARGE : 025.0 Percent
UTEMP : 49.5 C Internal
ALARM : Low Batt
DIPSW : 0x0000

−−−−> apcupsd−3.2.2 66556 Jan 27 15:24 apcupsd.c

Fixed a reporting error in /etc/apcupsd.status for CUSTOM SIMPLE cable.
Fixed a reporting error in /var/log/apcupsd.log for CUSTOM SIMPLE cable.

−−−−> apcupsd−3.2.1 67450 Jan 8 13:41 apcupsd.c

Fixed INSTALL from "readhat" to "redhat"
Fixed INSTALL errors of "slackware"

Bug search that causes network death, lost slaves under 2.0.X only??
Bug search that causes text−powerflute to kill daemon only under 2.0.X.

−−−−> apcupsd−3.2.0 66096 Dec 18 16:11 apcupsd.c

apcflute.c all code for reconfiguration complete.

−−−−> apcupsd−3.1.0 65925 Dec 8 21:18 apcupsd.c

−−−−> apcupsd−3.0.0

Now binaries only...........

−−−−> apcupsd−2.9.9 63431 Dec 3 13:05 apcupsd.c

Fixed "for (killcount=0;killcount>3;killcount++)" bug
 ^ killcount.

−−−−> apcupsd−2.9.8 62158 Nov 25 15:13 apcupsd.c

Added user defined magic and security timeouts.
Started powerflute update running master or standalone daemon.
Added another field for SmartUPS procfs file.

−−−−> apcupsd−2.9.7 60945 Nov 18 19:19 apcupsd.c

Added second alternate method for killing power for non SU SmartUPS.
I have one of these older models, and it needs a bigger kick.

APC UPS management under Linux

New Features in Apcupsd 3.7.2 235

Disable lockfiles if slave is a netslave with (ups−>cable == APC_NET),
or ethernet.

−−−−> apcupsd−2.9.6 60156 Nov 10 22:34 apcupsd.c

split source files...........

10885 Nov 10 20:40 apcnet.c :: NetUPS
18805 Nov 10 22:37 config.c :: configuration

5924 Nov 10 19:54 apcflute.c.src :: powerflute interface to apcupsd
5264 Nov 10 12:43 powerflute.c.src :: powerflute tcp management of apcupsd

Brian Schau added lockfiles for serial ports.

NetUPS or EtherUPS now works.
Needs more security likely, you can set your own TCP port number.
Will add user MAGIC at compile in the future.

−−−−> apcupsd−2.9.5 72431 Oct 28 00:27 apcupsd.c

Listing my hack of "powerflute". To enable it edit your /etc/apcupsd.conf
and set NETTIME to any value seconds is something to play around.

Reformat subroutines to get apcupsd to handle networks.

−−−−> apcupsd−2.9.4 70707 Oct 25 13:51 apcupsd.c

Smart V/S is in the same class as a BackUPS Pro.

Riccardo Facchetti has been volunteered to solve the
network part for the project. YEAH!!!!!!!!!!!!

Hello Andre,
I own a SmartUPS v/s and I have played a bit with your apcupsd. I have
found that the SmartUPS v/s command set is similar (if not equal) to the
one of BackUPS PRO, so I have changed the apcupsd.c code to behave this
way and seems to work well.

Another thing: I would like to have an application like powerchute. Of
course I am willing to write it, so I will call it powerflute.

My idea is:

apcupsd −> daemon
 − controls power status
 − listen on a TCP socket for incoming connections
 − get a command from TCP line
 − send the response to the command

powerflute −> application
 − connect to apcupsd
 − sends a command to apcupsd
 − get the response from apcupsd

apcupsd is listening to the socket with a select so it don't block. After
one or more connections are established, it read non−blocking from the TCP
file descriptor(s) and when a char is available, send it to UPS and
readline(), then send the buffer (terminated with '\n' to the TCP client
over the connection file descriptor.

APC UPS management under Linux

New Features in Apcupsd 3.7.2 236

You can note that I have protected apcupsd UPS monitoring from TCP
servicing by doing only non−blocking calls to the TCP layer, so there
should be no problem for it in detecting power problems without delay
caused by TCP connections.

A patch is enclosed for v/s == BKpro and for TCP servicing.
Of course this patch is still very preliminar, but I think it is a good
idea.

You can try the idea running the apcupsd with this patch applied,
telnetting to the port 6669 from localhost (no external connections
allowed now for security) and sending to the daemon some commands for the
UPS. The daemon will redirect them to the UPS and send the answer to you.
You can connect more than one client to the daemon (max 64 connections).

Please send me comments about it.

Ciao,
 Riccardo.
−−
Riccardo Facchetti | e−mail: riccardo at master.oasi.gpa.it

The TCP patch is not there but my hack job is present.
The package will have an addition called "powerflute".

−−−−> apcupsd−2.9.3 67655 Oct 23 14:57 apcupsd.c

Fixed spelling of "dissable" to "disable"
Forgot to add this function for ShareUPS.

int fillShareUPS(int sharefd, UPSINFO *ups);

Brian Schau with needed install changes in Makefile
for UNIFIX.

−−−−> apcupsd−2.9.2 67410 Oct 22 19:34 apcupsd.c

Changed "case" names in /etc/apcupsd.conf, again.....
This should be the last time...........

ShareUPS project maybe nearing an end.......

make install is almost done.

−−−−> apcupsd−2.9.1 65886 Oct 19 00:30 apcupsd.c

Changed "case" names in /etc/apcupsd.conf to lower case.
UPSTYPE SMARTUPS is now UPSTYPE smartups
Changed and add two new UPSMODE "cases" for ShareUPSes
Added Two new external call command for TIMEOUT and LOADLIMIT.
Shutdown types are now called by event not by a general shutdown.
Added CHANGEME to /sbin/powersc for SmartUPSes to announce that
its needs a batteries changed.

Tests are now run on (2) BackUPS 600's, SmartUPS Net 1400RM 700RM,
and SmartUPS 1250.

SmartUPSes now can call for shutdown based on percent of remaining
battery life or capacity.

APC UPS management under Linux

New Features in Apcupsd 3.7.2 237

Cleaned up manpage........

−−−−> apcupsd−2.9 58603 Oct 16 22:17 apcupsd.c

Changed to POSIX Style of control.
Now uses an external CONFIG file −> /etc/apcupsd.conf
All events are handled in the /sbin/powersc file, no more
sysvinit flavor hassels....................
Added ManPage, well an attempt.
Other things begun............

−−−−> apcupsd−2.8 42800 Oct 6 14:36 apcupsd.c

Finally solved the PLUG−N−PLAY Cable........
Tested on a BackUPS 600 and SmartUPS 700RM

Someone needs to test a BackUPS Pro........

If main power returns during a shutdown series, "apcupsd" will now reboot.

−−−−>
Better fix and support for #940−0023A cable, but still broke, drat.

−−−−>
Adds new code for UNIFIX Linux

−−−−> apcupsd−2.7.1 35902 Sep 3 21:38 apcupsd.c

By Chris:

More changes and fixes with Pro Series tested.
Better method of "walling" the console.
Minor debugging added.

ShareUPS Project Started, BETA.

−−−−> apcupsd−2.7 35413 Aug 14 15:50 apcupsd.c

TESTED on the following setups:

SLACKWARE SMP/NON−SMP (2.1.49) SmartUPS 700 BackUPS 600
REDHAT 4.1 SMP/NON−SMP (2.0.30) BackUPS 600
SUSE 5.0 SMP/NON−SMP (2.0.30) BackUPS 600

NOTE BackUPS Pro Series Untested at this time of release.

All UPSes can be time limited shutdown.

Fixed all possible killpower problems.....

Changed rc.power to include a NOW command.
Changed inittab file and added

What to do when battery power fails.
pn::powerfailnow:/etc/rc.d/rc.power now

Made changes for SuSE distribution.
Change /sbin/init.d/powerfail file

Chanages to CONFIG File

APC UPS management under Linux

New Features in Apcupsd 3.7.2 238

USE_SLACKWARE=yes
USE_REDHAT=no
USE_SUSE=no

Auto Updater

USE_MAKE_UPDATES=yes
USE_MAKE_INITTAB=yes

RedHat version for "powerstatus" file
REDHAT_VERSION=42

−−−−> apcupsd−2.6 35718 Jul 10 08:10 apcupsd.c

Added more info to apcupsd.maunal about special external controls.
SEE "6) OTHER" in apcupsd.maunal

−−−−> apcupsd−2.6.pre6 35718 Jul 10 08:10 apcupsd.c

Made changes in rc.power to become more universial.
Made N−th attempt to make use of APC cable #940−0095A "DRAT"
in "dumb mode". Will now try "smart mode".
"DOUBLE DRAT" APC has a new cable #940−0095C.
They just want to make things hard for us........
More Pro Fixes

S.u.S.e work around. This is a major DANGER!!!!
If you call /usr/sbin/apcupsd /dev/apcups killpower,
in a non−power problem situation.
"YOU WILL SCREW YOURSELF" this safe guard is a direct override
of the daemon.

−−−−> apcupsd−2.6.pre5a 36279 Jun 23 16:39 apcupsd.c

OOPS......forgot an "endif" in the distribution Makefile

−−−−> apcupsd−2.6.pre5 36279 Jun 23 16:39 apcupsd.c

Added Linux Flavor Dependencies in CONFIG file.
Fixed "nologin", so only root can login during a powerfailure.
All other attempts are defeated at the login prompt.

−−−−> apcupsd−2.6.pre4 35616 Jun 19 15:40 apcupsd.c

Possible RedHat 4.2 fix.

−−−−> apcupsd−2.6.pre3 35282 Jun 17 01:41 apcupsd.c

Fixes RedHat install and Makefile to make backup of files
to be changed during installation. Sorry about the mistake
RedHat users.

−−−−> apcupsd−2.6.pre2 35282 Jun 17 01:41 apcupsd.c

More Pro Fixes and stuff for RedHat install and Makefile

−−−−> apcupsd−2.6.pre1 35279 Jun 16 23:04 apcupsd.c

More Pro Fixes and stuff for RedHat install

−−−−> apcupsd−2.5 36558 Jun 1 19:41 apcupsd.c

APC UPS management under Linux

New Features in Apcupsd 3.7.2 239

More Pro Fixes and stuff for RedHat install

−−−−> apcupsd−2.5.pre4 35240 May 23 11:10 apcupsd.c

Can now re−init logfile at boot time with:
/{path}/apcupsd /dev/apcups newlog
This will help keep the log file from eating your root partition

940−0020B retested, fine
940−0095A untested −−−−−−!!BETA CODE!!−−−−−−−−

−−−−> apcupsd−2.5.pre3 34829 May 22 17:56 apcupsd.c

major bug check....sorry
tested on smart and back ups, not pro yet
940−0020B not retested yet

−−−−> apcupsd−2.5.pre2 28712 May 21 20:39 apcupsd.c

New logging features.

−−−−> apcupsd−2.5.pre

RedHat Support and Back UPS Pro Support via third party.
Christopher J. Reimer

−−−−> apcupsd−2.4 24409 May 19 14:17 apcupsd.c

Back UPS Pro BETA Support

Karsten Wiborg
Christopher J. Reimer

−−−−> apcupsd−2.3 21278 May 13 10:11 apcupsd.c

I made a patch to your apcupsd that allows it to be configured for
external commands to run (instead of the built−in wall). This allows me
to set it up to send out a call to my pager when the power fails, among
other things.

Anyway, here it is.
−−
Chris Adams − cadams at ro.com

not public release, yet.

−−−−> apcupsd−2.2 21275 May 8 12:53 apcupsd.c

Fixed psuedo procfs type status file in the /etc directory.
Now works for both SMART and DUMB MODE.

Eric Raymond
Redit of apcupsd.manual.

−−−−> apcupsd−2.1 20926 May 6 23:08 apcupsd.c

Jason Orendorf

"After building and installing the daemon init files I found
out why you #define the term _ANNOY_ME...it is rather annoying

APC UPS management under Linux

New Features in Apcupsd 3.7.2 240

to get 'wall'ed every 3 seconds − though I do think the
feature is important. I made a trivial modification to a few
files to make the time delay ('wall' frequency) configurable
at build time. If you haven't made this change yourself, feel
free to incorporate these changes into your development source
if you think it would be useful to others."

Eric Raymond

Edited APC_UPSD.README.1ST to apcupsd.manual.
Many thanks.

Finally added psuedo procfs type status file in the /etc directory.
Broken for DUMB MODE

−−−−> apcupsd−2.0 20119 May 2 17:36 apcupsd.c

Name change to help sunsite.unc.edu "keeper" daemon.

Black Cables #940−0024B and #940−0024C are now supported for APC SmartUPS.
They have been tested on an APC SmartUPS SU700/1400RM. I don't know if
it will work on APC BackUPS Pro Series.......
Tested SmartUPS SU700RM with SMNP PowerNet(tm) card and SmartMode i/o
through DB−9 port with 940−0024B and #940−0024C. This means that you
can SMNP manage your SmartUPS with SMNP PowerNet(tm) card. You must have
your own SMNP software..........
Added /proc/apcupsd file for pseudo procfs info.
Deleted announce aka −D_ANNOY_ME, for pseudo procfs info file.

Borrowed a bunch of code for Smart−UPS from Pavel Korensky's apcd.c apcd.h.

−−−−> Enhanced−APC−UPS v1.9 April 17, 1997

Name change to help sunsite.unc.edu "keeper" daemon.

−−−−> Enhanced_APC_UPS v1.9 Apr 14 15:02 apc_upsd.c

bug found by Tom Kunicki
"I still can cause the UPS to shutoff with a power disturbance by
 typing 'apc_upsd /dev/apc_ups killpower' before the disturbance." ... "
 Maybe you could disable the 'killpower' switch except for when the UPS
 is in the condition where it is supposed to be used..."

I have tested my BackUPS cable on the following and it works as designed:
 APC BackUPS 400, APC BackUPS 600, and APC SmartUPS SU1400RM.
I have tested APC's cable #940−0020B on the following and it works as designed:
 APC BackUPS 400, APC BackUPS 600, and APC SmartUPS SU1400RM.
I have NOT tested a BackUPS Pro, since I don't have one yet.

NOTE: My SmartUPS CABLE has broken code and more likely a broken cable design.

Black Cables #940−0024B and #940−0024C are still in the works but not high
priority, yet.

−−−−> Enhanced_APC_UPS v1.8 Apr 8 00:06 apc_upsd.c

Corrected defines in code for 940−0020B, 940−0023A, and 940−0095A.
−D_SMARTUPS can no longer be define if you select USE_APC=yes
There is no SmartUPS "Smart Mode" support, it has never been available.

APC UPS management under Linux

New Features in Apcupsd 3.7.2 241

I am waiting to hear from APC about pinouts for the following cables
#940−0023A their Unix OS cable and
#940−0095A their Win95OS cable.
If you want to use and APC cable, you must have cable #940−0020B ONLY....

Deleted Enhanced_APC_BackUPS.tar.gz from distribution.
Deleted rc.apc_power, all cables use rc.power.

Not publically released at sunsite.unc.edu

−−−−> Enhanced_APC_UPS v1.7g−fix Apr 3 17:42 Makefile

Error in Makefile, rc.apc_power is for testing APC SmartUPS "black" cable.
All installs should use rc.power only, I forgot to make this change in the
distribution Makefile from the Master Makefile.

−−−−> Enhanced_APC_UPS v1.7g Apr 1 15:31 apc_upsd.c

Possible FULL support for Grey cable APC# 940−0020B for BackUPS only
There still may be a bug like the original Enhanced_APC_BackUPS v1.0,
but has not shown it face yet after FIVE (5) forced power outages.

NO SUPPORT YET: Black cable APC# 940−0024B for SmartUPS BackUPS PRO only
This is take MUCH longer.......I don't have either SmartUPS BackUPS PRO to
test with, but can simulate the effect of PIN#8 on a BackUPS 400 and 600.

−−−−> Enhanced_APC_UPS v1.6b Mar 31 22:03 apc_upsd.c

Added USE_APC in CONFIG for using APC cables
Added for using APC cables rc.apc_power
Basic support like original three−wire daemon.

Black cable APC# 940−0024B for SmartUPS and BackUPS PRO only
Grey cable APC# 940−0020B for BackUPS only

VERY BETA......REPEAT, VERY BETA!!!!, ALMOST ALPHA........

Not publically released at sunsite.unc.edu

−−−−> Enhanced_APC_UPS v1.5 Mar 31 12:07 apc_upsd.c

Fixed a possible bug on the SmartUPS side of the daemon.
Retested cable design for "Andreas vasquez Mack"
Soon to test "black APC cable" for "Kofi N. Agyemang" and
 "Pete Rylko"
APC Black Cable Support soon v1.6?

−−−−> Enhanced_APC_UPS v1.4 Mar 1 17:18 apc_upsd.c

Added ANNOUNCE defeat in CONFIG

−−−−> Enhanced_APC_UPS v1.3 Mar 1 16:41 apc_upsd.c

Fixed bug with momentary power outage less than 10 seconds with announce.
That darn announce.......
Added original Enhanced_APC_BackUPS package to distribution.
Never released........

−−−−> Enhanced_APC_UPS v1.2 Mar 1 15:46 apc_upsd.c

Fixed a loop order bug.

APC UPS management under Linux

New Features in Apcupsd 3.7.2 242

It now release the power problems message after power returns.

−−−−> Enhanced_APC_UPS v1.1 Feb 28 16:25 apc_upsd.c

Copied new dowall.c from Sysvinit−2.69.
Added support for SmartUPS (non−Smart Accessories Port).
Fixed the above problem of repeated power failures.
Added cable design for SmartUPS (non−Smart Accessories Port).

−−−−> Enhanced_APC_BackUPS v1.0 Sep 20 01:52 backupsd.c

Known Bug in special power situations. IFF (if and only if) the following
happens will this daemon fail to do its job.

If your power fails long enough to cause "backupsd" to activate and cleanly
shutdown your Linux−Box, and returns later only breifly.

(That is long enough for the UPS to clear the KILL_POWER_BIT and causes)
(your Linux−Box to reboot. But not long enough to recharge you UPS's)
(battery above the low−battery latch state, and power fails again. The)
(daemon cannot currently catch the status change.)

I have never had this happen to me ever, but I can force this to happen
under laboratory test conditions. You can too, but it is not advised.
Your filesystem will say "! at #$%#$*at " and much more to you.

Thanks for the support and use of this daemon.

hedrick at astro.dyer.vanderbilt.edu
Andre Hedrick

http://www.brisse.dk/site/apcupsd/

APC UPS management under Linux

New Features in Apcupsd 3.7.2 243

