
Apcupsd User’s Manual

Apcupsd Version 3.10.17
A UPS Control Program

Kern Sibbald

Apcupsd is a UPS control system that permits orderly shutdown of your computer in
the event of a power failure.

This document was last updated 14 March 2005
Copyright c© 1999-2005 Kern Sibbald
Copying and distribution of this file, with or without modification, are permit-
ted in any medium without royalty provided the name Apcupsd, the copyright
notice, and this notice are preserved.

Apcupsd source code is released under the GNU General Public License version 2.
Please see the file COPYING in the main source directory.

For more information on the project, please visit the main web site at
http://www.apcupsd.com.

http://www.apcupsd.com

i

Table of Contents

. 1

Release Notes 1

Release Notes

This release contains a good number of cleanups and bug fixes to prior 3.10.x versions,
and is intended to be the official release. See the ChangeLog below for more details.

New Features

- Implement USB on all *BSD systems. Note, the kernel
drivers on most of these systems are still fragile.
There are known problems, for example, on FreeBSD.

- Fix killpower on USB UPSes to properly turn off UPS.
- More killpower fixes for BackUPS Pros.
- Fix killpower sequence for serial UPSes.

Change Log for current version

----> Release 3.10.17 xxMar05
- Update default apcupsd.conf to recommend a blank DEVICE setting for USB

driver.
- Add /dev/hiddev? to Linux USB driver device node search path.
- Add Mac OS X startup script
- Add new *BSD USB driver to support USB UPSes on FreeBSD, OpenBSD, and NetBSD.

THIS DRIVER IS BETA SOFTWARE AND HAS A KNOWN LOCKUP ISSUE ON FREEBSD. Please
keep this in mind when deciding whether or not to deploy it. PLEASE READ THE
"CHECKING OUT YOUR USB SUBSYSTEM (BSD)" SECTION OF THE MANUAL as it contains
crucial details on how to configure your system for the new driver.

- Add BackUPS Pro shutdown code to USB driver
- Prefer BackUPS style shutdown over SmartUPS in USB driver to resolve shutdown

issues on BackUPS CS models
- Restructure USB driver to share common code
- Fix slave mode segfault bug introduced by --killpower fixes in 3.10.16.
- Commit kernstodo
- Added an anonymous patch to powerflute.c and to the slack-apcupsd.in file.
- Add Whitebox to detected systems.
- Minor tweak to RedHat spec.in
- Apply Carl Lindbergs patch

for apcaction.c to fix the network management card
shutdown.

- Fix typo in targets.mak that prevents uninstall from working.
- Change name of thread_terminate to apc_thread_terminate to avoid

conflict on AIX.
- Put configure found SHUTDOWN in apccontrol.in
- Figured out how to scale the pdf images, so re-did them.
- Some minor updates to the manual, particularly the title

page.

Change Log for older versions

Release Notes 2

----> Release 3.10.16 04Nov04
- Adam has fixed the killpower problem for USB so that the
USB now properly turns off the power. Nice job.

- Converted manual from docbook to texinfo format. There is some
cleanup to be done, but we get an index.

- Thanks to Adam for converting the .png images to .pdf
- Apply patch to fix aastr... supplied by Manfred Schwarb.
- Changed Solaris to use mailx by default at the suggestion of

Neil Brookins.
- Added Adam’s snoopdecode.c to examples that allows viewing

USB events.
- A number of typos fixed in apccontrol files.
- Adam fixed a race condition in killpower with --kill-on-powerfail.
- --kill-on-powerfail disallowed for dumb UPSes since the

kill power will always occur before the system has been halted.
- Lots of doc updates.
- Add proper platform code so that configure will create

the 4 platform specific apccontrol files (some were missing).
- Apply fix from user to correct one of the shutdown

sequences for the Smart UPS. During the conversion to drivers
this was apparently mangled.

- Added code to close all file descriptors before becoming
daemon unless debug turned on.

- Add APCBATTCapBeforeRestore found by Adam to hid-ups.c
- Update copyright in apc_struct.h
- Take Adam’s new apc_defines.h with minor modification.
- Correct a bug reported by a user (he also had the fix) to

the snmp driver where Sensitivity was incorrectly reported.
- Add astrncpy() to snmp driver.
- Fix apcstatus.c to report Unknown for the sensitivity rather than

High if the sense word cannot be read or is incorrect.

----> Release 3.10.15 07Aug04
- Document Mandrake USB kernel problems.
- Fix HID_MAX_USAGES in the examples directory
- Apply David Walser’s patch for missing colors in multimon. Reads

the apcupsd.css file from the sysconf directory.
- Add EEPROM fix from Giuseppe Ghibo passed on by David Walser

----> Release 3.10.14 28Jul04
- Add workaround from Adam for linux/hiddev.h missing define.
- Updates to manual.
- Integrate patch for Mandrake apcupsd.in forwarded by David Walser.
- Found another store into the ups buffer so ifdefed it. Cannot

store into the ups buffer on non-pthreads systems.
- Fiddle with apcconfig.c to correct astrncpy() problem noted by

Adam.

Release Notes 3

- ifdef code in apcaccess that tries to write in the shared memory
buffer.

- Applied Adam’s patch for fixing the pthreads dependencies in asys.c
- Tweak the patch a bit hopefully so that OpenBSD will work.
- Made a sweep through quite a few files updating the copyright,

eliminating the disclaimer (now in DISCLAIMER), and adding as many
astrncpy() and astrncat()s as I could find. There still remain some
drivers and the cgi code to do.

- Implemented true/false and bool. Started implementing it in many of
the files I touched.

- Updated the net driver and did a fairly good testing of it.
- Made apcupsd remain in the foreground when doing a kill power.
- Eliminated some of the error messages during kill power by not

doing useless things.
- Added back code to print what is happening during kill power

in the USB code.
- Corrected a few of the USB error messages that could have been

missleading or confusing.
- Eliminated some inappropriate usages of size_t.
- Integrated a number of updates into the manual, particularly from

Adam.
- If the IP address is 0.0.0.0 force it to localhost in apcaccess.
- Integrat Thomas Habets’ changes to keep connect() from blocking

in apcnet.c so that apcupsd can service more slaves.
- Ensure that stdin/out/err are allocated in daemon_start() of apcuspd.c
- Update snmp.c with bug fix from Bacula.
- Bill has made numerous changes to improve the code such as adding

consts where appropriate.

----> Release 3.10.13 20Apr04
- Added code to support net snmp configured with --enable-net-snmp

based on patch sent by Sander Siemonsma.
- Build smtp on Unix systems.
- Update to most current smtp and make it easier to configure

for apcupsd or Bacula
- Start implementing native Win32 version.
- Rename cmd - ups_event and cmd_msg - event_msg
- Add user supplied code to make apcaccess read the conf file and

self configure to proper port. Thanks to Martin Flack for this
patch.

- Start simplifying the Copyright and making the dates current.
- Rework the net driver. It was really in poor shape.
- Replace sprintf with asnprint. Replace strcpy with astrncpy
- Apply a fix supplied by Jim Pick where syslog releases the

usb port and then re-attaches it to /dev/log.
- I finally took a careful look at the old master/slave networking

code as well as ran it here, and it was sadly broken. Hopefully

Release Notes 4

this commit fixes the problems.
- Fix a few string functions using the new routines.
- Added asys.c imported from Bacula, which contains a number of

simple system routines such as astrncpy(), ...

How To Use This Manual 5

How To Use This Manual

This is the manual for apcupsd, a daemon for communicating with UPSes (Uninter-
ruptible Power Supplies) made by American Power Corporation (APC). If you have an
APC-made UPS, whether sold under the APC nameplate or OEMed (The HP PowerTrust
2997A UPS has been tested as a "smartups" with cable Hewlett Packard part number 5061-
2575 equivalent to a custom-smart cable), and you want you get it working with a computer
running Linux, Unix, or Windows NT, you are reading the right document.

This manual is divided into parts which increase in technical depth as they go. If you
have just bought a state-of-the-art smart UPS with a USB or Ethernet interface, and you
are running a current version of Red Hat or SUSE Linux (8.0 or later), then apcupsd is very
nearly plug-and-play and you will have to read only the Basic User’s Guide (see 〈undefined〉
[Basic User’s Guide], page 〈undefined〉).

If your operating system is older, or if you have an old-fashioned serial-line UPS, you’ll
have to read about serial installation (see 〈undefined〉 [Installation on Serial-Line UPSes],
page 〈undefined〉). If you need more details about administration for unusual situations
(such as a master/slave or multi-UPS setup) you’ll need to read the section on advanced
topics (see 〈undefined〉 [Advanced topics], page 〈undefined〉). Finally, there is a Technical
Reference (see 〈undefined〉 [Technical Reference], page 〈undefined〉) section which gives full
details on things like configuration file directives and event-logging formats.

You should begin by reading the Quick Start (see Section 1.1 [Quick Start for Begin-
ners], page 6) instructions.

Basic User’s Guide

Chapter 1: Planning Your Installation 6

1 Planning Your Installation

1.1 Quick Start for Beginners

apcupsd is a complex piece of software, but most of its complexities are meant for
dealing with older hardware and operating systems. On current hardware and software
getting it running should not be very complicated.

The following is a help guide to the steps needed to get apcupsd set up and running as
painlessly as possible.

1. First, check to see if apcupsd supports your UPS and operating system (see Section 1.2
[Supported Operating Systems; UPSes and Cables], page 7).

2. Second, plan your configuration type (see 〈undefined〉 [Choosing a Configuration Type],
page 〈undefined〉). If you have just one UPS and one computer, this is easy. If you
have more than one machine being served by the same UPS, or more than one UPS
supplying power to computers that are on the same local network, you have more
choices to make.

3. Third, figure out if you have one of the easy setups. If you have a USB UPS, and a
USB-capable recent Linux such as Red Hat or SuSE at version 8.0, and you want to
use one UPS with one computer, that’s an easy setup. APC supplies the cable needed
to talk with that UPS along with the UPS. All you need to do is check that your USB
subsystem is working (see Section 1.4 [Checking Out Your USB Subsystem], page 12);
if so, you can go to the build and install step.

4. If you have a UPS designed to communicate via SNMP over Ethernet, that is also a
relatively easy installation. It’s in Advanced Topics (see 〈undefined〉 [Advanced topics],
page 〈undefined〉) mainly because it’s an unusual situation.

5. If you have a UPS that communicates via an RS232C serial interface and it is a Smar-
tUPS, then things are relatively simple, otherwise, your life is about to get interesting.

1. If you have a vendor-supplied cable, find out what cable type you have by looking
on the flat ends of the cable for a number, such as 940-0020A, stamped in the
plastic. Check the cables column of the table of types (see [type table], page 8) to
see if it’s a supported type.

2. If you don’t have a vendor-supplied cable, or your type is not supported, you may
have to build one yourself (see Chapter 21 [Cables], page 117). Here is hoping you
are good with a soldering iron!

6. Now you are ready to read the Building and Installing (see Chapter 2 [Building and
Installing apcupsd], page 20) section of the manual and follow those directions. If
you are installing from an RPM or some other form of binary package, this step will
probably consist of executing a single command.

7. Tweak your ‘/etc/apcupsd/apcupd.conf’ file as necessary. Often it will not be.

8. Change the BIOS settings (see Section 3.2 [Arranging for Reboot on Power-Up],
page 35) on your computer so that boots up every time it gets power. (This is not the
default on most systems.)

Chapter 1: Planning Your Installation 7

9. To verify that your UPS is communicating with your computer and will do the right
thing when the power goes out, read and follow the instructions in the Testing (see
Chapter 5 [Testing Apcupsd], page 43) section.

10. If you run into problems, read the Troubleshooting (see Chapter 6 [Troubleshooting
Your Installation], page 53) section of this manual.

11. If you still need help, send a message to the developer’s email list apcupsd-users at
lists.sourceforge.net describing your problem, what version of apcupsd you are
using, what operating system you are using, and anything else you think might be
helpful.

12. Read the manual sections on monitoring and maintaining your UPS.

1.2 Supported Operating Systems, UPSes and Cables

Please note that due to the lack of Unix USB API standards, the USB code in apcupsd
works only on Linux and *BSD systems. In addition, at the current release (3.10.17) the
USB support for *BSD systems can at best be considered BETA due to fragile kernel drivers.
Drivers for other OSes can be written, but it requires someone with a knowledge of the OS
and the USB to do so. (This lack of a Unix USB API interface is one of the big failings
of Unix. It occurs in other areas such as the GUI. Many people tout the diversity as an
advantage, but it is in fact a weakness.)

The apcupsd maintainers develop it under Fedora (Red Hat); that port is, accordingly,
the most up to date and best tested. There are enough Debian Linux users that that port
is also generally pretty fresh. Slackware Linux is also fully supported.

apcupsd has also been ported to FreeBSD, NetBSD, OpenBSD, HP/UX, Solaris, Alpha
Unix and the Cygwin Unix emulation under Windows. It is quite likely to work on those
systems, though the port may occasionally get stale and require minor tweaking.

In Section 2.7 [Operating System Specifics], page 27 you’ll find operating-system-
specific tips for building and configuring apcupsd.

You can generally count on your UPS being supported if it has either an Ethernet-
connected SNMP interface or a USB interface with an APC-supplied cable.

The "UPSTYPE Keyword" field is the value you will put in your
‘/etc/apcupsd/apcupd.conf’ file to tell apcupsd what type of UPS you have.
We’ll describe the possible values here, because they’re a good way to explain your UPS’s
single most important interface property — the kind of protocol it uses to talk with its
computer.

apcsmart An APCSmart UPS and its computer also communicate through an RS232C
serial connection, but they actually use it as a character channel (2400bps, 8
data bits, 1 stop bit, no parity) and pass commands back and forth in a primitive
language (see Chapter 29 [APC smart protocol], page 165) resembling modem-
control codes. The different APC UPSes all use closely related firmware, so the
language doesn’t vary much (later versions add more commands). This class of
UPS is in decline, rapidly being replaced in APC’s product line by USB UPSes.

usb A USB UPS speaks a universal well defined control language over a USB wire.
Most of APC’s lineup now uses this method as of late 2003, and it seems likely

mailto:apcupsd-users at lists.sourceforge.net
mailto:apcupsd-users at lists.sourceforge.net
monitoring
maintaining

Chapter 1: Planning Your Installation 8

to completely take over in their low- and middle range. Other manufacturers
(Belkin, Tripp-Lite, etc.) are moving the same way, though with a different
control protocol for each manufacturer. As long as USB hardware can be mass-
produced more cheaply than an Ethernet card, most UPSes are likely to go this
design route. Please note that even if you have a USB UPS, if you use a serial
cable with it (as can be supplied by APC), you will need to configure your UPS
as apcsmart rather than usb.

net This is the keyword to specify if you are using your UPS in Slave mode (i.e. the
machine is not directly connected to the UPS, but to another machine which
is), and it is connected to the Master via an ethernet connection. You must
have apcupsd’s Network Information Services NIS turned on for this mode to
work. It is a much simpler form of running a Slave than the old Master/Slave
code.

snmp SNMP UPSes communicate via an Ethernet NIC and firmware that speaks
Simple Network Management Protocol.

dumb A dumb or voltage-signaling UPS and its computer communicate through the
signal lines on an RS232C serial connection. Not much can actually be con-
veyed this way other than an order to shut down. Voltage-signaling UPSes are
obsolete; you are unlikely to encounter one other than as legacy hardware. If
you have a choice, we recommend you avoid simple signalling UPSes.

The table shown below lists the APC model supported, and the possible kewords that
you would use in the configuration with the listed cables. Some of the models, particularly
USB enabled models, can be run in multiple modes, so they may appear more than once in
the table. APC is putting out new models at a furious rate, and so it is very likely that your
model is not listed in the table. If it is USB enabled, it will probably work in USB mode.
Please note that some of these new models are extremely inexpensive, so they are stripped
down versions of more expensive units, and as such they do not offer as many features, so
some of the example output you see elsewhere in this manual may not be available with
your unit.

APC Model UPSTYPE
Keyword

UPSCABLE
keywords for Cables
Supported

Status

BackUPS CS/ES (se-
rial mode)

apcsmart smart (note: using
Smart Custom
RJ45) the new
Back-UPS RS 500
models are reported
NOT to work with
this cable.

Supported

BackUPS Pro,
Smarter BackUPS Pro

apcsmart 940-0095A Supported

Chapter 1: Planning Your Installation 9

SmartUPS, SmartUPS
VS (It has not been
confirmed that the ca-
ble shipped with the
VS is a 940-0095.),
PowerStack 450, Ma-
trix UPS, ShareUPS
Advanced Port

apcsmart smart (note: us-
ing Smart-Custom),
940-0024C

Supported

BackUPS CS USB,
Pro USB, ES USB,
RS/XS 1000, RS/XS
1500, and probably
other USB models

usb usb (note: using
APC cables
940-0127A/B/C)

Supported in ver-
sion >=3.9.8

SmartUPS USB, Back-
UPS Office USB, and
any other USB UPS

usb usb (note: using
APC cable, no
number)

Supported, version
>=3.9.8

All SNMP-capable
models

snmp ether Supported

BackUPS dumb simple (note: using
Simple-Custom
(This cable is not
an APC product.
You have to build
it yourself using
the instructions
in Chapter 21
[Cables], page 117.),
940-0020B, 940-
0020C, 940-0119A,
940-0023A

Supported

BackUPS Office, Back-
UPS ES

dumb 940-0119A Supported

BackUPS CS and pos-
sibly ES models (serial
mode)

dumb 940-0128A Supported

ShareUPS Basic Port dumb 940-0020B,
940-0020C,
940-0023A

Supported

There are three major ways of running apcupsd on your system. The first is a stan-
dalone configuration where apcupsd controls a single UPS, which powers a single computer.
This is the most common configuration. If you’re working with just one machine and one
UPS, skip the rest of this section.

Your choices become more interesting if you are running a small cluster or a big server
farm. Under those circumstances, it may not be possible or even desirable to pair a UPS
with every single machine. apcupsd supports some alternate arrangements.

Chapter 1: Planning Your Installation 10

The second type of configuration is a master/slave configuration, where one UPS powers
several computers, each of which runs a copy of apcupsd. The computer that controls the
UPS is called the master, and the other computers are called slaves. The master copy
of apcupsd communicates with and controls the slaves via an Ethernet connection. This
type of configuration may be appropriate for a small cluster of machines. Some example
configuration files for the master and the slave machines can be found in the examples
directory of the source distribution. The more recent examples are in master.apcupsd.conf
and slave.apcupsd.conf.

The third configuration (new with version 3.8.3), is where a single computer controls
multiple UPSes. In this case, there are several copies of apcupsd on the same computer,
each controlling a different UPS. One copy of apcupsd will run in standalone mode, and the
other copy or copies will normally run in master/slave mode. This type of configuration
may be appropriate for large server farms that use one dedicated machine for monitoring
and diagnostics

Here is a diagram that summarizes the possibilities:

Configuration types.

Chapter 1: Planning Your Installation 11

Chapter 1: Planning Your Installation 12

If you decide to set up one of these more complex configurations, see the Advanced
Topics (see 〈undefined〉 [Advanced topics], page 〈undefined〉) section for details.

1.3 Apcupsd Known USB Issues

- Problem: USB is only supported on Linux and *BSD systems (though the *BSD is
still BETA). Although the configuration script allows the usb driver to be enabled on other
platforms, it will only compile and run on Linux and *BSD systems.

- Workaround: Try using UPS in serial mode instead of USB.
- Problem: Linux 2.4 series kernels older than 2.4.22 do not bind the USB device to the

proper driver. This is evidenced by /proc/bus/usb/devices listing the UPS correctly but it
will have "driver=(none)" instead of "driver=(hid)". This affects RHEL3, among others.

- Workaround: Upgrade linux kernel to 2.4.22 or higher.
- Problem: Mandrake 10.0 and 10.1 systems with high security mode enabled (running

kernel-secure kernel) use static device nodes but still assign USB minor numbers dynami-
cally. This is evidenced by hiddev0: USB HID v1.10 Device [...] instead of hiddev96: ... in
dmesg log.

- Workaround: Boot standard kernel instead of kernel-secure or disable
CONFIG USB DYNAMIC MINORS and rebuild kernel-secure.

- Problem: USB driver linux-usb.c fails to compile, reporting errors about
HID MAX USAGES undefined. This is due to a defect in the linux kernel hiddev.h
header file on 2.6.5 and higher kernels.

- Workaround: Workaround: Upgrade to apcupsd-3.10.14 or higher. These versions
contain a workaround for the defect.

- Problem: On some systems such as Slackware 10.0, no USB devices will showup (see
the next section).

- Workaround: add the following to rc.local

mount -t usbdevfs none /proc/bus/usb

- Problem: 2.6 kernels use udev and does not autmatically create /dev/usb/hiddev??
as it should, causing apcupsd to

- Workaround: Edit the file /etc/udev/rules.d/50-udev.rules, and add the following:
KERNEL="hiddev*", NAME="usb/hiddev%n"

More details are provided in the following section ...

1.4 Checking Out Your USB Subsystem

You can skip this section if your UPS has an Ethernet or RS232-C interface or you are
not running on a Linux kernel. If it has a USB interface, you need to make sure that your
USB subsystem can see the UPS. On a Linux system this is easy, just do this from a shell
prompt (please see below for 2.6 kernel considerations):

Chapter 1: Planning Your Installation 13

Most of this section applies to Linux. However, toward the end, there is a list of known
issues with the BSD USB driver and the associated kernels.

cat /proc/bus/usb/devices

This information is updated by the kernel whenever a device is plugged in or unplugged,
irrespective of whether apcupsd is running or not. To interpret the codes in this file, please
see http://www.linuxhq.com/kernel/v2.4/doc/usb/proc usb info.txt.html

You should get some output back that includes something like this from ESR’s site,
featuring an RS 1000:

T: Bus=02 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 3 Spd=1.5 MxCh= 0
D: Ver= 1.10 Cls=00(>ifc) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
P: Vendor=051d ProdID=0002 Rev= 1.06
S: Manufacturer=American Power Conversion
S: Product=Back-UPS RS 1000 FW:7.g3 .D USB FW:g3
S: SerialNumber=JB0308036505
C:* #Ifs= 1 Cfg#= 1 Atr=a0 MxPwr= 24mA
I: If#= 0 Alt= 0 #EPs= 1 Cls=03(HID) Sub=00 Prot=00 Driver=hid

Note, if on the last line, Driver is listed as Driver=none then you do not have the
HID driver loaded or the driver did not attach to the UPS. One common cause is having a
Linux kernel older than 2.4.22 (such as a stock RedHat 9 kernel). If this is the case for your
system, please upgrade to at least kernel version 2.4.22 and try again. Otherwise, please
read further for instructions for other possible courses of action.

For more details on how to interpret these codes, please see the end of this section.
Here are two more ample entries from Kern Sibbald. The first features a Back-UPS

350 direct connected USB device:

T: Bus=01 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 2 Spd=1.5 MxCh= 0
D: Ver= 1.10 Cls=00(>ifc) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
P: Vendor=051d ProdID=0002 Rev= 1.00
S: Manufacturer=American Power Conversion
S: Product=Back-UPS 350 FW: 5.2.I USB FW: c1
S: SerialNumber=BB0115017954
C:* #Ifs= 1 Cfg#= 1 Atr=a0 MxPwr= 30mA
I: If#= 0 Alt= 0 #EPs= 1 Cls=03(HID) Sub=00 Prot=00 Driver=hid
E: Ad=81(I) Atr=03(Int.) MxPS= 8 Ivl= 10ms

The second features an IOgear USB-to-serial adapter that runs my serial SmartUPS
1000:

T: Bus=01 Lev=01 Prnt=01 Port=01 Cnt=02 Dev#= 4 Spd=12 MxCh= 0
D: Ver= 1.10 Cls=00(>ifc) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
P: Vendor=0557 ProdID=2008 Rev= 0.01
C:* #Ifs= 1 Cfg#= 1 Atr=a0 MxPwr=100mA
I: If#= 0 Alt= 0 #EPs= 3 Cls=ff(vend.) Sub=00 Prot=00 Driver=serial
E: Ad=81(I) Atr=03(Int.) MxPS= 10 Ivl= 1ms

http://www.linuxhq.com/kernel/v2.4/doc/usb/proc_usb_info.txt.html

Chapter 1: Planning Your Installation 14

E: Ad=02(O) Atr=02(Bulk) MxPS= 64 Ivl= 0ms
E: Ad=83(I) Atr=02(Bulk) MxPS= 64 Ivl= 0ms

Note that the IOgear device is using the serial driver (the I: line) while the Back-UPS
350 is using the hid driver.

In general, if you see your UPS model in the S field, which means Manufacturer=,
Product=, and SerialNumber=, and you see hid in the I field (or serial if you are using an
IOGear connection), you’re done. You can skip the rest of this section and go straight to
building and installing.

If it doesn’t show, check the obvious things; the UPS must be powered on, and a cable
must be properly seated in both the data port of the UPS and one of your machine’s USB
ports. Many UPSes have phone ports to provide surge protection for phones or modems —
make sure you haven’t plugged your USB cable into one of those rather than the data port
(which will usually be near the top edge of the case.)

Note, on recent Debian systems, they do not include the hiddev device nodes in /dev,
so you may need to manually create them using the examples/make-hiddev script.

Also, ensure that the correct drivers are loaded. Under Linux-2.4.x, you can check this
out easily by examining the right file in the ‘/proc’ system. Here’s how you can do that:

esr@grelber$ cat /proc/bus/usb/drivers

and you should get:

usbdevfs
hub

96-111: hiddev
hid

On Linux-2.6.x, make sure the sysfs filesystem is mounted on /sys and do:

adk0212@mail$ ls -l /sys/bus/usb/drivers/

where you should get

total 0
drwxr-xr-x 2 root root 0 May 1 18:55 hid
drwxr-xr-x 2 root root 0 May 1 18:55 hiddev
drwxr-xr-x 2 root root 0 May 1 18:55 hub
drwxr-xr-x 2 root root 0 May 1 18:55 usb
drwxr-xr-x 2 root root 0 May 1 18:55 usbfs

or perhaps something like

total 0
drwxr-xr-x 2 root root 0 Jan 6 15:27 hiddev
drwxr-xr-x 2 root root 0 Jan 6 15:28 hub
drwxr-xr-x 2 root root 0 Jan 6 15:28 usb
drwxr-xr-x 2 root root 0 Jan 6 15:27 usbfs
drwxr-xr-x 2 root root 0 Jan 6 15:28 usbhid

Chapter 1: Planning Your Installation 15

If your 2.6.x system does not have the /sys/bus/usb directory, either you do not have
sysfs mounted on /sys or the USB module(s) have not been loaded. (Check /proc/mounts
to make sure sysfs is mounted.)

A USB UPS needs all of these drivers — the USB device filesystem, the USB hub,
the Human Interface Device subsystem driver, and the Human Interface Device driver. If
you are compiling your own kernel, you want to enable CONFIG USB, CONFIG USB HID,
CONFIG USB HIDDEV, and CONFIG USB DEVICEFS as well as at least one USB Host
Controller Driver (CONFIG USB UHCI HCD [2.6.x], CONFIG USB UHCI [2.4.x], etc.).

If CONFIG USB is set as M, CONFIG USB HID must be M (if enabled at all). If
CONFIG USB is set as Y, CONFIG USB HID can be M or Y. hiddev, in turn, will be
built however HID is.

To complicate things more many Linux flavors running 2.6 kernels such as Fedora FC3
use the udev filesystem, which creates the devices in /dev (as well as some others such as
network devices) on the fly as they are needed. It is basically a hotplug system, giving a
lot more power to the user to determine what happens when a device is probed or opened.
It is also a lot more complicated.

The bottom line for apcupsd on such a system is that the file /dev/usb/hiddev# is not
defined, and hence apcupsd terminates in error. The solution to the problem is to add a rule
to the udev rules file. On Fedora FC3, this file is found in /etc/udev/rules.d/50-udev.rules.
Start by adding the following line:

BUS="usb", SYSFS[idVendor]="051d", NAME="usb/hiddev%n"

where you replace the [and] with braces in the line above.
Then either reboot your system, or unplug and replug your UPS and then restart

apcupsd. At that point apcupsd should work fine. You can use:
udevinfo -a -p /sys/class/usb/hiddev0/

to get more information on the fields that can be matched.
Adam has provided the following as a more generic rule:
KERNEL="hiddev*", NAME="usb/hiddev%n"

If you have several UPSes or you just want to give your UPS a fixed name, you can
use:

BUS="usb", SYSFS[serial]="AS0123456789", NAME="usb/ups0"

where you replace the [and] with braces and the serial number with the one that
correspnds to your UPS.

Some kernels ship, such as Mandrake 10, ship with CONFIG USB DYNAMIC MINORS
turned on. This is not ideal for running with apcupsd, and the easiest solution is to turn
CONFIG USB DYNAMIC MINORS off and rebuild your kernel, or find a pre-built kernel
with it off. For a kernel with CONFIG USB DYNAMIC MINORS turned on to work
with apcupsd, you must enable devfs. The following will tell you if devfs is enabled:

$ ps ax | grep devs

which should give something like the following:

533 ? S 0:00 devfsd /dev

Chapter 1: Planning Your Installation 16

What complicates the situation much more on Mandrake kernels is their security level
since CONFIG DYNAMIC USB MINORS is turned on, but on higher security levels devfs
is turned off. The net result, is that in those situations hiddev is hosed (to use Adam’s
terms) so apcupsd will not work. So, in these cases, the choices are:

(a) Reduce the security level setting of the system
(not sure if this is possible after the initial install).

(b) Custom build a high security kernel with devfs enabled
and make sure devfs is mounted and devfsd is running.

(c) Custom build a high security kernel with dynamic
minors disabled

(d) Use udev

For a typical USB section of a kernel .config file, please see the end of this section.
For the IOGear serial USB connection, you need:

usbcore
usbserial
pl2303

Finally, check that appropriate USB devices exist. On a Red Hat system you can do
this:

esr@grelber$ ls /dev/usb/h*
/dev/usb/hiddev0 /dev/usb/hiddev12 /dev/usb/hiddev2 /dev/usb/hiddev6
/dev/usb/hiddev1 /dev/usb/hiddev13 /dev/usb/hiddev3 /dev/usb/hiddev7
/dev/usb/hiddev10 /dev/usb/hiddev14 /dev/usb/hiddev4 /dev/usb/hiddev8
/dev/usb/hiddev11 /dev/usb/hiddev15 /dev/usb/hiddev5 /dev/usb/hiddev9

This will tell you that the Human Interface Device nodes, one of which apcupsd will
use to talk with the UPS, exist. On other Linuxes the layout will be slightly different; the
hiddev devices will usually live in a ‘/dev/usb/hid/’ subdirectory. If these devices don’t
exist, you may need to run ‘<apcupsd-source>/examples/make-hiddev’ to create them.

Now build and run the hid-ups test program. You do not have to configure and build
the rest of apcupsd to do this. To build hid-ups enter:

cd <apcupsd-source>/examples
make hid-ups

There should be no errors. Now assuming that everything has gone well to this point
and that you have connected your USB UPS, enter:

./hid-ups

It should print a sample report of the information that it has obtained from your UPS.
CAUTION! if you have a 2.4.x Linux kernel do not run two copies of this program at the
same time, or your kernel will freeze. The report that is printed should look very similar
to the report in ‘<apcupsd-source>/examples/hid-ups.rpt’. If the program reports that
the device was not found ensure that all the appropriate modules are loaded (as described

Chapter 1: Planning Your Installation 17

earlier), then unplug your UPS and plug it back in. This should permit the kernel to
recognize the UPS.

If ./hid-ups tells you "No permission, try this as root", you know what to try. If it says
"Couldn’t find USB UPS device, check your /dev.", then it is very unlikely that apcupsd
will work. You probably need to run the script "make-hiddev" before continuing.

If all there things check out and you still can’t see the UPS, something is more seriously
wrong than this manual can cover — find expert help. If you are unable to list USB devices
or drivers, you kernel may not be USB-capable and that needs to be fixed. Please check
if your kernel has the three patches listed in the ‘<apcupsd-source>/examples’ directory.
Each of the files ends with the name ‘.patch’, and at the current writing they are:

linux-2.4.20-killpower.patch
linux-2.4.20-USB-reject.patch
linux-2.6.0-USB-queue-overflow.patch

For example, RedHat 9 and/or pre-2.4.22 kernels are known to need the linux-2.4.20-
USB-reject.patch for APC SmartUPS XL series devices.

There are also a few email files that you can consult in the ‘examples’ directory for
additional information and details.

Finally, check your Kernel Config. You will find more information about it at: Appen-
dix B [Kernel Config], page 187.

KNOWN ISSUES WITH BSD USB
The BSD USB driver for apcupsd is BETA software and has some known issues.
- FreeBSD lockups: Some users have experienced lockups (apcupsd stops respond-

ing) on FreeBSD systems. In at least one case this problem was worked around by dis-
abling pthreads (–disable-pthreads flag to configure). The problem seems to be caused by
a FreeBSD kernel bug.

- FreeBSD kernel panics if USB cable is unplugged while apcupsd is running. This is
another kernel bug and is most easily worked around by not hot- unplugging the UPS while
apcupsd is running.

PLATFORMS & VERSIONS
The new (beta) FreeBSD USB driver supports FreeBSD, OpenBSD and NetBSD.

(Thanks go to the *BSD developers who kept a nearly identical interface across all three
platforms.)

The driver has been tested with the following platform versions:
FreeBSD-5.3 (Primary development platform)
FreeBSD-4.11
NetBSD-2.0
NetBSD-1.6.2
OpenBSD-3.6

FreeBSD-5.3 has had the most testing since it is the primary platform on which the
driver is developed. The other platforms and versions have had somewhat less testing. The
only architecture tested so far (on any platform) is i386, althought there is no reason to
think it will not work on other archs. If you run the driver on a new platform version or
architecture, please report your experience to the apcupsd-users mailing list.

Chapter 1: Planning Your Installation 18

KERNEL CONFIGURATION
You will need to rebuild your kernel in order to disable the uhid driver. uhid is not

sufficient for apcupsd at this time and we need to prevent it from grabbing the UPS device.
You should disable the following devices in your kernel config file (comment them out):

FreeBSD (you WILL NOT lose use of USB keyboard and mouse): uhid
NetBSD (you WILL lose use of USB keyboard and mouse): uhidev, ums, wsmouse,

ukbd, wskbd, uhid
OpenBSD (you WILL lose use of USB keyboard and mouse): uhidev, ums, wsmouse,

ukbd, wskbd, uhid
For detailed information on rebuilding your kernel, consult these references:
FreeBSD:
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/kernelconfig.html

NetBSD:
http://www.netbsd.org/guide/en/chap-kernel.html

OpenBSD:
http://www.openbsd.org/faq/faq5.html#Building

CHECKING UPS IS RECOGNIZED BY THE KERNEL
After building a properly configured kernel, reboot into that kernel and plug in your

UPS USB cable. You should see a dmesg log message like the following:
ugen0: American Power Conversion Back-UPS RS 1500 FW:8.g6 .D USB FW:g6, rev

1.10/1.06, addr 2
Note that the "ugen" driver is called out. If you see "uhid" instead, it probably means

you did not properly disable the uhid driver when you compiled your kernel or perhaps
you’re not running the new kernel.

You can also check with ’usbdevs -d’ to get a list of USB devices recognized by the
system as well as the drivers they are associated with. For example:

usbdevs -d
addr 1: UHCI root hub, VIA
uhub0
addr 2: Back-UPS RS 1500 FW:8.g6 .D USB FW:g6, American Power Conversion

ugen0

MAKING DEVICE NODES
Apcupsd communicates with the UPS through the USB generic device, ugen. You may

or may not need to manually make ugen device nodes in /dev, depending on what OS you
are using.

FreeBSD: No manual intervention needed. FreeBSD automatically creates the ugen
nodes on demand.

NetBSD: By default, NetBSD only creates nodes for the first ugen device, ugen0. Check
’usbdevs -d’ to see which device your UPS was bound to and then create the appropriate
nodes by running ’cd /dev ; ./MAKEDEV ugenN’, where ugenN is the ugen device name
shown by usbdevs. It is probably a good idea to create several sets of ugen nodes in case
you add more USB devices.

Chapter 1: Planning Your Installation 19

OpenBSD: Similar to NetBSD, OpenBSD creates nodes for ugen0 and ugen1. Check
’usbdevs -d’ to see which device your UPS was bound to and then create the appropriate
nodes by running ’cd /dev ; ./MAKEDEV ugenN’, where ugenN is the ugen device name
shown by usbdevs. It is probably a good idea to create several sets of ugen nodes in case
you add more USB devices.

APCUPSD CONFIGURATION
Apcupsd must be built with USB support, which is accomplished via the –enable-usb

switch to configure.
Your apcupsd.conf file needs the following hardware-related settings:
UPSCABLE usb
UPSTYPE usb
DEVICE

The DEVICE setting is blank on purpose; apcupsd will automatically locate your UPS.
The delay-, timeout-, and NIS-related settings should be configured as per your usual

preference.

Chapter 2: Building and Installing apcupsd 20

2 Building and Installing apcupsd

2.1 Installation from Binary Packages

2.1.1 Red Hat Linux

For Red Hat systems, apcupsd is available in binary RPM format. This is the simplest
way to install. If you have no previous version of apcupsd on your machine and are creating
a standalone configuration, simply install the RPM with a normal rpm -ihv command.
You’re done, and can now skip the rest of this chapter and go straight to tweaking your
run-time configuration file. (see Chapter 3 [After Installation], page 35)

If you have a previous installation, you can upgrade with a normal rpm -Uhv, but this
may not upgrade the halt script. It may be better to do the upgrade as a remove (rpm -e)
foll;owed by a fresh install (rpm -ihv).

After installation of the binary RPM, please verify carefully that
‘/etc/rc.d/init.d/halt’ was properly updated and contains new script lines
flagged with ***APCUPSD***.

Since there is no standard location for ‘cgi-bin’, the rpm will place the binary
CGI programs in the directory ‘/etc/apcupsd/cgi’. To actually use them, you must
copy or move them to your actual cgi-bin directory, which on many systems is located in
‘/home/httpd/cgi-bin’.

2.1.2 Microsoft Windows

If you have a binary release of the Win32 apcupsd, please see the instructions in
the Advanced Topics (see 〈undefined〉 [Advanced topics], page 〈undefined〉) section of this
manual.

2.2 Installation from Source

Installation from source might have to be be done different ways depending on what
system you are running. The basic procedure involves getting a source distribution, running
the configuration, rebuilding, and installing.

The basic installation from a tar source file is rather simple:
1. Unpack the source code from its tar archive.
2. Go into the directory containing the source code.
3. Run ./configure (with appropriate options as described below)
4. make
5. su (i.e. become root)
6. Stop any running instance of apcupsd. The command to do this will look like <system-

dependent-path>/apcupsd stop

Chapter 2: Building and Installing apcupsd 21

7. uninstall any old apcupsd This is important since the default install locations may have
changed.

8. make install

9. edit your ‘/etc/apcupsd/apcupsd.conf’ file if necessary

10. ensure that your halt script is properly updated

11. Start the new apcupsd with: <system-dependent-path>/apcupsd start

If all goes well, the ./configure will correctly determine which operating system you
are running and configure the source code appropriately. configure currently recognizes
the systems listed below in the Section 2.7 [Operating System Specifics], page 27 section
of this chapter and adapts the configuration appropriately. Check that the configuration
report printed at the end of the configure process corresponds to your choice of directories,
options, and that it has correctly detected your operating system. If not, redo the configure
with the appropriate options until your configuration is correct.

Please note that a number of the configure options preset ‘apcupsd.conf’ directive
values in an attempt to automatically adapt apcupsd as best possible to your system. You
can change the values in ‘apcupsd.conf’ at a later time without redoing the configuration
process by simply editing the ‘apcupsd.conf’ file.

Other configuration options can be used to set up the installation of HTML documen-
tation and optional modules, notably the CGI interface that enables the UPS state to be
queried via the Web and the optional powerflute curses-based control panel. Still others
enable features such as thread support. You will find a complete reference later in this
chapter.

In general, you will probably want to supply a more elaborate configure statement to
ensure that the modules you want are built and that everything is placed into the correct
directories.

On Red Hat, a fairly typical configuration command would look like the following:

CFLAGS="-g -O2" LDFLAGS="-g" ./configure \
--enable-usb \
--with-upstype=usb \
--with-upscable=usb \
--prefix=/usr \
--sbindir=/sbin \
--with-cgi-bin=/var/www/cgi-bin \
--enable-cgi \
--with-css-dir=/var/www/docs/css \
--with-log-dir=/etc/apcupsd \
--enable-pthreads \
--enable-powerflute

By default, make install will install the executable files in ‘/sbin’, the manuals in
‘/usr/man’, and the configuration and script files in ‘/etc/apcupsd’. In addition, if your
system is recognized, certain files such as the startup script and the system halt script will
be placed in appropriate system directories (usually subdirectories of ‘/etc/rc.d’).

Chapter 2: Building and Installing apcupsd 22

2.3 Verifying a Source Installation

There are a number of things that you can do to check if the installation (make install)
went well. The fist is to check where the system has installed apcupsd using which and
whereis. On my Red Hat system, you should get the following (lines preceded with a $
indicate what you type):

$ which apcupsd
/sbin/apcupsd
$ whereis apcupsd
apcupsd: /sbin/apcupsd /etc/apcupsd /etc/apcupsd.conf
/etc/apcupsd.status /usr/man/man8/apcupsd.8.gz
/usr/man/man8/apcupsd.8

If you find an apcupsd in ‘/usr/sbin’, ‘/usr/local/sbin’, ‘/usr/lib’, or another
such directory, it is probably a piece of an old version of apcupsd that you can delete. If
you are in doubt, delete it, then rerun the make install to ensure that you haven’t deleted
anything needed by the new apcupsd. Please note that the files specified above assume the
default installation locations.

As a final check that the make install went well, you should check your halt script
(in ‘/etc/rc.d’ on SUSE systems, and in ‘/etc/rc.d/init.d’ on Red Hat systems) to see
that the appropriate lines have been inserted in the correct place. Modification of the halt
script is important so that at the end of the shutdown procedure, apcupsd will be called
again to command the UPS to turn off the power. This should only be done in a power
failure situation as indicated by the presence of the ‘/etc/powerfail’ file, and is necessary
if you want your machine to automatically be restarted when the power returns. On a Red
Hat system, the lines containing the # ***apcupsd*** should be inserted just before the
final halt command:

Remount read only anything that’s left mounted.
#echo "Remounting remaining filesystems (if any) readonly"
mount | awk ’/ext2/ { print $3 }’ | while read line; do

mount -n -o ro,remount $line
done

See if this is a powerfail situation. # ***apcupsd***
if [-f /etc/apcupsd/powerfail]; then # ***apcupsd***

echo # ***apcupsd***
echo "APCUPSD will now power off the UPS" # ***apcupsd***
echo # ***apcupsd***
/etc/apcupsd/apccontrol killpower # ***apcupsd***
echo # ***apcupsd***
echo "Please ensure that the UPS has powered off before rebooting" # ***apcupsd***
echo "Otherwise, the UPS may cut the power during the reboot!!!" # ***apcupsd***
echo # ***apcupsd***

fi # ***apcupsd***

Chapter 2: Building and Installing apcupsd 23

Now halt or reboot.
echo "$message"
if [-f /fastboot]; then
echo "On the next boot fsck will be skipped."
elif [-f /forcefsck]; then
echo "On the next boot fsck will be forced."
fi

The purpose of modifying the system halt files is so that apcupsd will be recalled after
the system is in a stable state. At that point, apcupsd will instruct the UPS to shut off the
power. This is necessary if you wish your system to automatically reboot when the mains
power is restored. If you prefer to manually reboot your system, you can skip this final
system dependent installation step by specifying the disable-install-distdir option on
the ./configure command (see below for more details).

The above pertains to Red Hat systems only. There are significant differences in the
procedures on each system, as well as the location of the halt script. Also, the information
that is inserted in your halt script varies from system to system. Other systems such as
Solaris require you the make the changes manually, which has the advantage that you won’t
have any unpleasant surprises in your halt script should things go wrong. Please consult
the specific system dependent README files for more details.

Please note that if you install from RPMs for a slave machine, you will need to remove
the changes that the RPM install script made (similar to what is noted above) to the halt
script. This is because on a slave machine there is no connection to the UPS, so there is no
need to attempt to power off the UPS. That will be done by the master.

2.4 Configure Options

All the available configure options can be printed by entering:

./configure --help

When specifying options for ./configure, if in doubt, don’t put anything, since nor-
mally the configuration process will determine the proper settings for your system. The
advantage of these options is that it permits you to customize your version of apcupsd.
If you save the ./configure command that you use to create apcupsd, you can quickly
reset the same customization in the next version of apcupsd by simply re-using the same
./configure command.

The following command line options are available for configure to customize your
installation.

–prefix=<path>
This defines the directory for the non-executable files such as the manuals. The
default is /usr.

–sbindir=<path>
This defines the directory for the executable files such as apcupsd. The default
is ‘/sbin’. You may be tempted to place the executable files in ‘/usr/sbin’
or ‘/usr/local/sbin’. Please use caution here as these directories may be

Chapter 2: Building and Installing apcupsd 24

unmounted during a shutdown and thus may prevent the halt script from
calling apcupsd to turn off the UPS power. Though your data will be protected,
in this case, your system will probably not be automatically rebooted when the
power returns.

–enable-powerflute
This option enables the building of the powerflute executable, which is a ncurses
based program to monitor the UPS. This program is not necessary for the proper
execution of apcupsd.

–enable-cgi
This enables the building of the CGI programs that permit Web browser access
to apcupsd data. This option is not necessary for the proper execution of
apcupsd.

–with-cgi-bin=<path>
The with-cgi-bin configuration option allows you to define the directory where
the CGI programs will be installed. The default is ‘/etc/apcupsd’, which is
probably not what you want.

–with-css-dir=<path>
This option allows you to specify where you want apcupsd to put the Cascading
Style Sheet that goes with the multimoncss.cgi CGI program.

–enable-master-slave
Turns on the master/slave networking code (default). This is sometimes referred
to as the old master/slave code, and is more complicated than using NIS and
the net driver to control Slaves (see below).

–enable-apcsmart
Turns on generation of the APC Smart driver (default).

–enable-dumb
Turns on generation of the dumb signalling driver code (default).

–enable-usb
Turns on generation of the Linux (only) USB driver code. By default this is
disabled.

–enable-net
Turns on generation of the NIS network driver for slaves. This is an alternative
to old master/slave code. For the master, this code should be disabled. For
each slave, this is the only driver needed. This driver works by reading the
information from the the configured master using the NIS (Network Information
Services) interface.

–enable-snmp
Turns on generation of the SNMP driver. This driver will control the computer
by reading the UPS information over the network assuming you are running
SNMP. By default this is disabled.

–enable-test
This turns on a test driver that is used only for debugging. By default it is
disabled.

Chapter 2: Building and Installing apcupsd 25

–enable-nis
Turns on the Network Information Server (NIS) code within apcupsd. This is
enabled by default. If you do not want to access the status of the UPS from
the network and you are not controlling any slaves via NIS (enable-net), this
can be disabled.

–enable-pthreads
This option enables pthreads support causing apcupsd to be built as a threaded
program rather than forking to create separate processes. apcupsd built in this
fashion is more efficient that the standard version being one third the data size
and less overhead locking and coping shared memory. This option is highly
recommended for Windows builds.

–with-libwrap=<path>
This option when enabled causes apcupsd to be built with the TCP WRAP-
PER library for enhanced security. In most cases, the <path> is optional since
configure will determine where the libraries are on most systems.

–with-nologin=<path>
This option allows you to specify where apcupsd will create the nologin file
when logins are prohibited. The default is ‘/etc’

–with-pid-dir=<path>
This option allows you to specify where apcupsd will create the process id (PID)
file to prevent multiple copies from running. The default is system dependent
but usually ‘/var/run’.

–with-log-dir=<path>
This option allows you to specify where apcupsd will create the EVENTS and
STATUS log files. The default is ‘/etc/apcupsd’. This option simply sets
the default of the appropriate path in the ‘apcupsd.conf’ file, which can be
changed at any later time.

–with-lock-dir=<path>
This option allows you to specify where apcupsd will create the serial port lock
file. The default is systemdependent but usually ‘/var/lock’. This option sim-
ply sets the appropriate path in the ‘apcupsd.conf’ file, which can be changed
at any later time.

–with-pwrfail-dir=<path>
This option allows you to specify where apcupsd will create the ‘powerfail’
file when a power failure occurs. The default is system dependent but usually
‘/etc’.

–with-serial-dev=<device-name>
This option allows you to specify where apcupsd will look for the serial device
that talks to the UPS. The default is system dependent, but often ‘/dev/ttyS0’.
This option simply sets the appropriate device name in the ‘apcupsd.conf’ file,
which can be changed at any later time.

–with-nis-port=<port>
This option allows you to specify what port apcupsd will use for the Network
Information Server (the CGI programs). The default is system dependent but

Chapter 2: Building and Installing apcupsd 26

usually 3551 because that port has been officially assigned to apcupsd by the
IANA. This option simply sets the appropriate port in the ‘apcupsd.conf’ file,
which can be changed at any later time.

–with-nisip=<IP-Address>
This option allows you to specify the value that will be placed on then NISIP
directive in the configuration file. The default is 0.0.0.0. No checking is done
on the value entered, so you must ensure that it is a valid IP address.

–with-net-port=<port>
This option allows you to specify what port apcupsd will use for Master and
Slave communications. The default is system dependent but usually 6666. This
option simply sets the appropriate port in the ‘apcupsd.conf’ file, which can
be changed at any later time.

–with-upstype=<type>
This option allows you to specify the type of UPS that will be connected to your
computer. The default is: smartups. This option simply sets the appropriate
UPS type in the ‘apcupsd.conf’ file, which can be changed at any later time.

–with-upscable=<path>
This option allows you to specify what cable you are using to connect to the
UPS. The default is: smart. This option simply sets the appropriate UPS cable
in the ‘apcupsd.conf’ file, which can be changed at any later time.

–disable-install-distdir
This option modifies the apcupsd Makefiles disable installation of the distri-
bution (platform) directory. Generally, this used to do a full installation of
apcupsd except the final modification of the operating system files (normally
‘/etc/rc.d/halt’, etc.). This is useful if your operating system is not directly
supported by apcupsd or if you want to run two copies of apcupsd on the same
system. This option can also be used by those of you who prefer to manually
reboot your system after a power failure or who do not want to modify your
system halt files.

2.5 Recommended Options for most Systems

For most systems, we recommend the following options:

./configure --prefix=/usr --sbindir=/sbin --enable-usb \
--enable-pthreads

and you can optionally build and install the CGI programs as follows:

./configure --prefix=/usr --sbindir=/sbin --enable-usb \
--enable-cgi --with-cgi-bin=/home/httpd/cgi-bin \
--enable-pthreads

Chapter 2: Building and Installing apcupsd 27

2.6 Compilers and Options

Some systems require unusual options for compilation or linking that the ./configure
script does not know about. You can specify initial values for variables by setting them in
the environment. Using a Bourne-compatible shell, you can do that on the command line
like this:

CFLAGS="-O2 -Wall" LDFLAGS= ./configure

Or on systems that have the env program, you can do it like this:

env CPPFLAGS=-I/usr/local/include LDFLAGS=-s ./configure

Or for example on the Sun Solaris system, you can use:

setenv CFLAGS -O2
setenv LDFLAGS -O
./configure

You can get a listing of all available options by doing:

./configure --help

or simply see the previous section of this manual.

2.7 Operating System Specifics

With the exception of Linux SUSE and Linux Red Hat systems used by the developers,
we rely on users to help create installation scripts and instructions as well as to test that
apcupsd runs correctly on their system. As you can imagine, most of these people are
system administrators rather than developers so they are very busy and don’t always have
time to test the latest releases. With that in mind, we believe that you will find that a lot
of very valuable work has been already done to make your installation much easier (and
probably totally automatic).

Below, you will find a list of operating systems for which we have received installation
files:

Alpha (see Section 2.7.1 [Alpha], page 28)
Debian (see Section 2.7.2 [Debian], page 28)
FreeBSD (see Section 2.7.3 [FreeBSD], page 28)
HPUX (see Section 2.7.4 [HPUX], page 29)
NetBSD (see Section 2.7.5 [NetBSD], page 29)
OpenBSD (see Section 2.7.6 [OpenBSD], page 29)
Red Hat (see Section 2.7.7 [Red Hat Systems], page 29)
Slackware (see Section 2.7.8 [Slackware], page 29)
SUSE (see Section 2.7.9 [SUSE], page 30)
Solaris (see Section 2.7.10 [Sun Solaris], page 30)

Chapter 2: Building and Installing apcupsd 28

unknown (see Section 2.7.11 [Unknown System], page 33)
Win32 (see Section 2.7.12 [Windows Systems with CYGWIN Installed], page 33)

2.7.1 Alpha

The Alpha V4.0 version of apcupsd builds without compiler errors with gcc version
2.95.2. It is unlikely that the native Alpha compiler will work because of varargs differences.
Unless you are a system guru, we recommend that you connect your UPS to the second
serial port ‘/dev/tty01’ to avoid conflicts with the console device.

DEVICE /dev/tty01

In addition, you should ensure serial port lock file in ‘apcupsd.conf’ is defined as:

LOCKFILE /var/spool/locks

Unlike the Linux systems, the system halt routine is located in ‘/sbin/rc0’, so after
the make install, please check that this file has been correctly updated.

The start/stop script can be found in:

/sbin/init.d/apcupsd

2.7.2 Debian

This port is complete and is operation by several users. Since Debian build and
install procedures are somewhat particular, we have put the extra Debian information
into the following two subdirectories: ‘<src>/distributions/debian/examples/’ and
‘<src>/distributions/debian/packageinfo’

You can also find the official Debian packages on the Debian site at:
http://packages.debian.org/stable/admin/apcupsd.html
http://packages.debian.org/testing/admin/apcupsd.html
http://packages.debian.org/unstable/admin/apcupsd.html

2.7.3 FreeBSD

This port is complete and is being used by several users. As of version 3.8.3, we do not
recommend that you compile apcupsd with pthreads enabled. This is because the current
FreeBSD implementation of pthreads runs as a single process, and thus is less efficient
(consumes more CPU time) than the forking version of apcupsd. We hope to rectify this in
a future version by using the FreeBSD LinuxThreads implementation of pthreads.

On the FreeBSD OS, there is no known way for a user program to get control when all
the disks are synced. This is needed for apcupsd to be able to issue the killpower command
to the UPS so that the UPS shuts off the power. To accomplish the same thing on FreeBSD
systems, make sure you have a SmartUPS and that your UPS shutdown grace period is
set sufficiently long so that you system will power down (usually 2 minutes), the use the
kill-on-powerfail option on the apcupsd command line.

Please note the concerns listed below under OpenBSD concerning the use of pthreads.

http://packages.debian.org/stable/admin/apcupsd.html
http://packages.debian.org/testing/admin/apcupsd.html
http://packages.debian.org/unstable/admin/apcupsd.html

Chapter 2: Building and Installing apcupsd 29

2.7.4 HPUX

We have no reports from testing this yet on version 3.8.4, but worked fine on 3.8.1

2.7.5 NetBSD

Submitted during development of 3.8.2, this should be a complete distribution. Please
read the comments on the pthreads implementation in the FreeBSD section above as they
may apply equally to OpenBSD.

Please note the concerns listed below under OpenBSD concerning the use of pthreads.

2.7.6 OpenBSD

Ensure that you read the ‘distributions/openbsd/README’ file before running
apcupsd. There are some critical differences in how the OpenBSD implementation operates
when the UPS batteries are exhausted. Failure to take this into account may result in
the system not being fully halted when power is lost. Please read the comments on the
pthreads implementation in the FreeBSD section above as they may apply equally to
OpenBSD.

PLEASE NOTE. Due to some deficiencies or errors in the OpenBSD pthreads libraries,
if you build apcupsd on OpenBSD with pthread and a child program is launched (i.e. mail
notification of events), this may cause OpenBSD to freeze up. The best solution is probably
to build without pthread. However, in doing so, you must realize that the bulk of this
manual assumes that pthreads is enabled, and thus many of the comments about apcaccess
will not be applicable. A second solution that seems to work is to delete all calls to the
email notification routines from ‘apccontrol’. In doing so, some users have succeeded in
running apcupsd with pthreads.

If you want to know the technical problems with pthreads on OpenBSD, it is as best
we can tell because the pthreads are not real kernel pthreads as on Linux and Solaris, but
rather a user program that makes all I/O non-blocking. So when apcupds does I/O, the
userland pthreads libarary will switch to another thread if it wants to run. This works
fine except that when a child process is called and it exits, all the blocking/non-blocking
statuses of the open file descriptors in the parent program are reset as blocking – this causes
chaos and an almost immediate freezing of the program (apcupsd).

2.7.7 Red Hat Systems

Red Hat systems are fully supported, and by following the standard installation in-
structions given above, you should experience few or no problems.

2.7.8 Slackware

Slackware systems are fully supported, and by following the standard installation in-
structions given above, you should experience few or no problems.

Chapter 2: Building and Installing apcupsd 30

2.7.9 SUSE

SUSE systems are fully supported, and by following the standard installation instruc-
tions given above, you should experience few or no problems.

2.7.10 Sun Solaris

Please read this before attempting to compile or install the beta software. It contains
important information that will make your efforts easier.

If you find bugs, or run into problems that seem to be related to the version of Solaris
that you run, please feel free to contact the maintainers by email, or through the develop-
ment mailing list. We’ll attempt to help with problems getting the beta running, although
we can’t promise a quick response.

As always, remember testing UPSes can be hazardous to you system, and, apcupsd may
contain bugs that can damage your system and data files! You must accept all responsibility
for running this software. An unexpected power-off of a running system can be a disaster.
As always, make backups of any critical information before you install this software.

Remember, we told you. we’ll listen sympathetically if you lose data, but there will be
nothing we can do to help you.

Please read the general installation instructions given above before continuing on with
these Solaris-specific instructions. Then come back and read this section before attempting
to build the package.

For building the system, we suggest that you run the configure and make processes as
your normal UNIX user ID. The make install must be run as root. But if your normal ID
has an environment setup for using the C compiler, it’s simpler to do that than to set up
root to have the correct environment.

Normally, we support the GCC compiler, but we have also attempted to support the
Solaris workshop compilers and EGCS compilers. Please be aware that if you do not use
GCC, you may experience a few problems.

Whichever compiler you do have, please insure that you can execute the compiler from
the command line before running configure. If you do not have an environment setup to
run the compiler first, configure will fail.

Before running ./configure, please be sure that you do not have ‘/usr/ucb’ on
your path. This may cause the ./configure to choose the wrong shutdown program.
If ./configure detects that /usr/usb is on your path, it will print a warning message.
Please follow the advice to avoid shutdown problems.

Your normal UNIX user ID must own the source tree directories, and you must have
the normal development tools in your path. This includes make, the compiler, the M4
preprocessor, the linker, and ar or ranlib. If the user you are logged in as can compile and
link a C program from a source file, then you have all the required tools available.

You will want to install the executables in a directory that remains mounted during
the shutdown. Solaris will unmount almost everything except the root directories. Since
the ability to power the UPS off requires access to the executable programs, they need to be
in a directory that will never be unmounted. And since they should also be in a directory

Chapter 2: Building and Installing apcupsd 31

that normal users cannot get into, ‘/sbin’ is the default. However, please be aware that if
you want to follow Sun’s filesystem conventions you would use the following:

./configure \
--prefix=/opt/apcupsd \
--sbindir=/etc/opt/apcupsd/sbin \
--sysconfdir=/etc/opt/apcupsd \
--with-cgi-bin=/opt/apcupsd/cgi-bin

The way to setup the ‘/sbin’ directory as the executables directory is to pass configure
the sbindir=/sbin option. No other arguments should be required, and your setup and
platform should be detected automatically by configure.

Once you have run configure, you will need to do a make. Once the make has completed
with no errors, you must su to root to complete the install. After the su, you may not have
a path to the make program anymore. In that case, you should do the make install step
as:

/usr/ccs/bin/make install

Once the install completes, you must edit the /sbin/rc0 script as detailed below, then
exit from the su’ed shell.

In order to support unattended operation and shutdown during a power failure, it’s
important that the UPS remove power after the shutdown completes. This allows the
unattended UPS to reboot the system when power returns by re-powering the system. Of
course, you need autoboot enabled for your system to do this, but all Solaris systems have
this by default. If you have disabled this on your system, please re-enable it.

To get the UPS to remove power from the system at the correct time during shutdown,
i.e., after the disks have done their final sync, we need to modify a system script. This
script is ‘/sbin/rc0’.

We do not have access to every version of Solaris, but we believe this file will be almost
identical on every version. Please let us know if this is not true.

At the very end of the ‘/sbin/rc0’ script, you should find lines just like the following:

unmount file systems. /usr, /var and /var/adm are not unmounted by umountall
because they are mounted by rcS (for single user mode) rather than
mountall.
If this is changed, mountall, umountall and rcS should also change.
/sbin/umountall
/sbin/umount /var/adm >/dev/null 2>&1
/sbin/umount /var >/dev/null 2>&1
/sbin/umount /usr >/dev/null 2>&1

echo ’The system is down.’

We need to insert the following lines just before the last ’echo’:

#see if this is a powerfail situation

Chapter 2: Building and Installing apcupsd 32

if [-f /etc/apcupsd/powerfail]; then
echo
echo "APCUPSD will power off the UPS"
echo
/etc/apcupsd/apccontrol killpower
echo
echo "Please ensure that the UPS has powered off before rebooting"
echo "Otherwise, the UPS may cut the power during the reboot!!!"
echo

fi

We have included these lines in a file called ‘rc0.solaris’ in the distributions/sun
subdirectory of the source tree. You can cut and paste them into the /sbin/rc0 file at the
correct place, or yank and put them using vi or any other editor. Note that you must be
root to edit this file.

You must be absolutely sure you have them in the right place. If your ‘/sbin/rc0’ file
does not look like the lines shown above, do not modify the file. Instead, email a copy of
the file to the maintainers, and we will attempt to figure out what you should do. If you
mess up this file, the system will not shut down cleanly, and you could lose data. Don’t
take the chance.

This feature has only been tested with APC SmartUPS models. If you do not have
a SmartUPS, you will be one of the first testers to try this feature. Please send email to
let us know if it works with your UPS model, what model you have, and if possible, the
event logs located in ‘/etc/apcupsd’. We’d be very interested in your results, and would
be glad to work with you to get this feature working correctly with all the APC models. A
detailed description of the screen output during the shutdown would be very helpful if you
see problems.

You will then need to make the normal changes to the ‘/etc/apcupsd/apcupsd.conf’
file. This file contains the configuration settings for the package. It is important that
you set the values to match your UPS model and cable type, and the serial port that you
have attached the UPS to. People have used both ‘/dev/ttya’ and ‘/dev/ttyb’ with no
problems. You should be sure that logins are disabled on the port you are going to use,
otherwise you will not be able to communicate with the UPS. If you are not sure that logins
are disabled for the port, run the ’admintool’ program as root, and disable the port. The
’admintool’ program is a GUI administration program, and required that you are running
CDE, OpenWindows, or another XWindows program such as KDE.

Solaris probes the serial ports during boot, and during this process, it toggles some
handshaking lines used by dumb UPSes. As a result, particularly for simple signalling
"dumb" UPSes it seems to kick it into a mode that makes the UPS think it’s either in a
calibration run, or some self-test mode. Since at this point we are really not communicating
with the UPS, it’s pretty hard to tell what happened. But it’s easy to prevent this, and
you should. Disconnect the UPS, and boot the system. When you get to a login prompt,
log in as root. Type the following command:

eeprom com1-noprobe=true

or

Chapter 2: Building and Installing apcupsd 33

eeprom com2-noprobe=true

depending on which com port your UPS is attached to. Then sync and shutdown the
system normally, reattach the UPS, and reboot. This should solve the problem. However,
we have some reports that recent versions of Solaris (7 & 8) appear to have removed this
eeprom option and there seems to be no way to suppress the serial port probing during
boot.

At this point, you should have a complete installation. The daemon will load automat-
ically at the next boot. Watch for any error messages during boot, and check the event logs
in ‘/etc/apcupsd’. If everything looks OK, you can try testing the package by removing
power from the UPS. NOTE! if you have a voltage-signalling UPS, please run the first power
tests with your computer plugged into the wall rather than into the UPS. This is because
dumb serial-port UPSes have a tendency to power off if your configuration or cable are not
correct.

As a user, your input is very helpful in solving problems with the package, and providing
suggestions and future directions for the development of the package. We are striving to
provide a useful package that works across all platforms, and welcome your feedback.

Best regards, and thanks for your interest and help, The Apcupsd Development Team.

2.7.11 Unknown System

During the ./configure, if apcupsd does not find one of the systems for which it has
specific installation programs, it will set the Operating System to unknown and will use the
incomplete installation scripts that are in ‘ <src>/distributions/unknown/’. You will be
on your own, or you can ask the developers list (apcupsd-users at lists.sourceforge.net) for
installation instructions. This directory also contains a hint file for Linux From Scratch,
which could be helpful for other systems as well.

2.7.12 Windows Systems with CYGWIN Installed

If you wish to build from the source, and if you have CYGWIN version 1.5.5 and GCC
2.95.3-5 installed, it is possible to build the Win32 version of apcupsd. Please don’t try any
other versions of CYGWIN as there were known problems.

To date, the Win32 version has only been build on a Win98 SR2 and a WinXP system
with the above CYGWIN environment and all the available CYGWIN tools loaded. In
addition, the builds were done running under the bash shell. As time permits, we will
experiment with other environments, and if any of you do build it from source, please let
us know. The current CYGWIN environment was loaded using the CYGWIN setup.exe
program, downloading ALL the latest binaries and installing them.

We recommend that you run the ./configure command with the following options:

./configure \
--prefix=/apcupsd \
--sbindir=/apcupsd/bin \
--sysconfdir=/apcupsd/etc/apcupsd \

Chapter 2: Building and Installing apcupsd 34

--with-pid-dir=/apcupsd/etc/apcupsd \
--mandir=/apcupsd \
--with-cgi-bin=/apcupsd/etc/apcupsd/cgi \
--enable-pthreads

After which, you can do a:

make

And to install apcupsd, do:

make install

Finally, you should follow the Win32 (see 〈undefined〉 [Installation on Windows],
page 〈undefined〉) installation instruction, skipping the part that describes unZipping the
binary release.

Chapter 3: After Installation 35

3 After Installation

3.1 Checking Your Configuration File

Once you have installed apcupsd, either from a binary package or by building from
source, your next step should be to inspect your ‘/etc/apcupsd/apcupsd.conf’ file to
make sure it is valid.

You can read the complete reference on configuration directives (see Chapter 26 [Con-
figuration Directive Reference], page 144), but if you are setting up a normal standalone
configuration you should only need to check (and possibly fix) the first three items listed
below.

Your UPSTYPE should be the UPS’s protocol type: dumb, apcsmart, usb, net, snmp,
or ether. Your UPSCABLE should be the type of cable you are using. You should have
gotten both from the table of types (see [type table], page 8); usually they will both be the
string "usb".

If you have a USB device, it is better not to specify a DEVICE directive by commenting
it out. Apcupsd will automatically search for your device in the standard places. If you
specify a DEVICE, it should be the name of the device (or device range) that apcupsd is to
use to communicate with the UPS. If you’re using a USB UPS under Linux, you may leave
the device name field blank and apcupsd will search all the standard locations for the UPS.
You may also explicitly specify the device location as either ‘/dev/usb/hid/hiddev[0-15]’
(on non-Red-Hat systems) or ‘/dev/usb/hiddev[0-15]’ (on Red Hat systems), but this is
not recommended.

Note that you should enter "/dev/usb/hiddev[0-15]" literally as shown. The "[0-15]"
expression tells apcupsd to search all hiddev devices until it finds a UPS. You can restrict
the search to a subset of devices by using something like "[0-4]", but keep in mind this will
limit apcupsd’s ability to locate the UPS if the kernel relocates it to a different device node,
which happens occasionally during short power failures. Again, it is highly recommended
to leave the DEVICE directive blank and let apcupsd find your device automatically.

If the first time you execute apcupsd, you get a message to the effect that the Apcupsd
USB driver is missing, it means that you most likely forgot to put –enable-usb on your
‘./configure’ command line. If you loaded apcupsd from an rpm file, you may have
selected the wrong one – please ensure that the word usb appears in the rpm package name.

The next chapter (see Chapter 4 [Configuration Examples], page 38) of this manual
provides you with the essential characteristics of each main type of configuration file. After
those elements are correct, apcupsd should run, and then it is only a matter of customization
of your setup.

3.2 Arranging for Reboot on Power-Up

The final consideration for a automatic reboot after a full power down is to ensure that
your computer will automatically reboot when the power is restored.

This is not the normal behavior of most computers as shipped from the factory. Nor-
mally after the power is cut and restored, you must explicitly press a button for the power

Chapter 3: After Installation 36

to actually be turned on. You can test your computer by powering it down; shutting off
the power (pull the plug); then plugging the cord back in. If your computer immediately
starts up, good. There is nothing more to do.

If your computer does not start up, manually turn on the power (by pressing the power
on button) and enter your computer’s SETUP program (often by pressing DEL during
the power up sequence; sometimes by pressing F10). You must then find and change the
appropriate configuration parameter to permit instant power on.

Normally, this is located under the BOOT menu item, and will be called something
such as Restore on AC/Power Loss or Full-On. The exact words will vary according to
the ROM BIOS provider. Generally you will have three options: Last State, Power On,
and Power Off. Although Last State should normally work, we recommend setting your
computers to Power On. This means that whenever the power is applied they are on. The
only way to shut them off is to pull the plug or to have a special program that powers them
off (‘/sbin/poweroff’ on Linux systems).

If after making all the changes suggested above, you cannot get your computer to
automatically reboot, you might examine your halt script (‘/etc/rc.d/init.d/halt’ in the
case of Red Hat Linux) and see if the final line that performs the halt or reboot contains the
-p option for powering down the computer. It should not with the logic used by apcupsd,
but if it does, the -p option could cause your computer to power off while the UPS is still
suppling power (i.e. before the UPS kills the power). Depending on the setting of your
BIOS, it may prevent your computer from restarting when the power returns. As already
mentioned, this should not apply, but in case of problems it is worth a try.

3.3 Making sure apcupsd Is Running

The simplest way to invoke apcupsd is from the command line by entering:

/sbin/apcupsd

To do so, you must be root. However, normally, you will want apcupsd started auto-
matically when your system boots. On some systems with installation support (e.g. SUSE
and Red Hat), the installation procedure will create a script file that you will be automati-
cally invoked when your system reboots. On other systems, you will have to invoke apcupsd
from your ‘rc.local’ script.

On Red Hat systems, this script file that automatically invokes apcupsd on system
start and stops is: ‘/etc/rc.d/init.d/apcupsd’

To start apcupsd manually (as you will probably do immediately following the instal-
lation), enter the following:

/etc/rc.d/init.d/apcupsd start

To understand how this file is automatically invoked at system startup and shutdown,
see the man pages for chkconfig(8).

On SUSE systems, the script file that automatically invokes apcupsd on system start
and stops is ‘/etc/rc.d/apcupsd’

Chapter 3: After Installation 37

To start apcupsd manually (as you will probably do immediately following the instal-
lation), enter the following:

/etc/rc.d/apcupsd start

Normally, when properly installed, apcupsd will be started and stopped automatically
by your system. Unfortunately, the details are different for each system. Below, we give
the commands for selected systems. Alternatively, there are simple stopapcupsd and star-
tapcupsd scripts in the examples directory, or you can modify one of the scripts in the
distributions directory to meet your needs.

To stop apcupsd you can do the following:
On Red Hat systems:

/etc/rc.d/init.d/apcupsd stop

On SUSE systems:

/etc/rc.d/apcupsd stop

Please see the Testing Apcupsd (see Chapter 5 [Testing Apcupsd], page 43) chapter for
more details on insuring that apcupsd is running properly.

Chapter 4: Configuration Examples 38

4 Configuration Examples

4.1 A Simple USB Configuration

If you have a USB UPS, and you have apcupsd version 3.10.7 or higher, the essential
elements of your apcupsd.conf file should look like the following:

apcupsd.conf v1.1
UPSCABLE usb
UPSTYPE usb
DEVICE
LOCKFILE /var/lock
UPSCLASS standalone
UPSMODE disable

Notice that we have not specified a device. In doing so, apcupsd will try all the well
known USB ports. We strongly recommend you use this (empty device address) form unless
you have a good reason to do otherwise.

An alternate way of specifying the device is to specify a range of device addressess as
follows:

DEVICE /dev/usb/hid/hiddev[0-15]

If you have more than one device, you may need to specify each device individually
using absolute device paths. This is not, however, recommended.

DEVICE /dev/usb/hiddev0

Please use the explicit specifications of a device only if your know exactly what you
are doing. In general, it is much easier to let apcupsd find the device itself.

If you use the range specification, you should enter /dev/usb/hiddev[0-15] literally as
shown. The "[0-15]" expression tells apcupsd to search all hiddev devices until it finds a
UPS. You can restrict the search to a subset of devices by using something like "[0-4]", but
keep in mind this will limit apcupsd’s ability to locate the UPS if the kernel relocates it to
a different device node.

On Debian systems, the hiddev devices are not automatically defined. As a con-
sequence, you will need to run the make-hiddev script in the examples directory of the
source.

4.2 A Simple Configuration for a SmartUPS

If you have a Smart UPS using the cable supplied by APC, or you build a CUSTOM
SMART cable outlined in the cables chapter, a very simple configuration file would look
like the following:

apcupsd.conf v1.1
UPSCABLE smart
UPSTYPE smartups

Chapter 4: Configuration Examples 39

DEVICE /dev/ttyS0
LOCKFILE /var/lock
UPSCLASS standalone
UPSMODE disable

Normally you would have many more configuration directives to completely customize
your installation, but this example shows you the minimum required.

4.3 A Simple Configuration for a Simple Signaling or Dumb

If you have a simple signaling or dumb UPS such as a BackUPS, you will need to know
exactly what cable you have and specify it on the UPSCABLE directive. Please see the list
of UPSes versus cables in the beginning of this document for more information. The cable
number is normally stamped in the plastic at one end of the cable. If you specify the wrong
cable, it is very likely that at the first power failure, your computer will be immediately
shutdown. This is an unfortunate consequence of the dumb signaling mode. To avoid this,
first replace /etc/apcupsd/apccontrol with safe.apccontrol found in the examples directory,
then test until everything works correctly. Once you have the correct cable, be sure to
remember to reinstall the correct apccontrol file and test that your computer is correctly
shutdown during a power failure.

apcupsd.conf v1.1
UPSCABLE (number of cable you have)
UPSTYPE dumb
DEVICE /dev/ttyS0
LOCKFILE /var/lock
UPSCLASS standalone
UPSMODE disable

If your cable does not have low battery detection, as is the case with some older models,
you will also need to define TIMEOUT nnn where you set nn to be the number of seconds
on a power failure after which a shutdown is effected.

Normally you would have many more configuration directives to completely customize
your installation, but this example shows you the minimum required.

4.4 A Simple Master Configuration

You have a Smart UPS using the cable supplied by APC and you want it to act
as a master for another computer, which is powered by the same UPS. A very simple
configuration file would look like the following:

apcupsd.conf v1.1
UPSCABLE smart
UPSTYPE smartups
DEVICE /dev/ttyS0
LOCKFILE /var/lock
UPSCLASS netmaster

Chapter 4: Configuration Examples 40

UPSMODE net
NETTIME 10
NETPORT 6666
SLAVE slave1.mynetwork.com
SLAVE slave2.mynetwork.com

Note, the main difference from the stand alone configuration is that you have specified
UPSCLASS netmaster and UPSMODE net. In addition, you have specified one or more
slave machines. In this mode of networking, (as opposed to using the net driver as described
several sections below), your master knows the presence of all the slaves. They carry on
a very explicit communication, and the slaves are explicitly notified by the master of any
important changes such as a shutdown.

There is a simpler form of contolling slaves using the net driver with an apcupsd NIS
server. The simpler form is much easier to configure. See: see Section 4.7 [A Sample NIS
Slave Configuration Using the Net Driver], page 41 below for details.

4.5 A Simple Slave Configuration

You have a Smart UPS using the cable supplied by APC that is connected to the
master machine configured above, and the master machine is running as a netmaster and
has the address of your slave machine. This slave machine has no serial port connection to
the UPS, but is powered by the same UPS as the master. A very simple configuration file
would look like the following:

apcupsd.conf v1.1
UPSCABLE ether
UPSTYPE smartups
LOCKFILE /var/lock
UPSCLASS netslave
UPSMODE net
NETPORT 6666
MASTER master.mynetwork.com

The main difference from the master configuration is that you have specified UPSCA-
BLE ether and UPSCLASS netslave. In addition, you have specified a single controlling
master.

Please note, there are reports that you must use UPSTYPE smartups on the slave
even if the master is using UPSTYPE dumb. This is apparently some bug in the new dumb
driver.

In this configuration, the shutdown will be initiated by the master. It is also possible
to specify BATTERYLEVEL, MINUTES, and TIMEOUT configuration directives in the
Slave machine that will cause the slave to shutdown before the master. This can often be
useful if the slave is less important than the master and you wish to reduce battery power
consumption so that the master can remain up longer during a power outage.

Chapter 4: Configuration Examples 41

4.6 Variation on the Master/Slave Configuration

It is also possible to have a Master/Slave configuration where the Slave is powered by
a different UPS (or any other power source), but is nevertheless controlled (i.e. shutdown)
by the master. The setup would be identical to the Master/Slave configuration files shown
above. The only difference is where the slave actually receives its power. In effect, apcupsd
does not know or care where the power really comes from.

4.7 A Sample NIS Slave Configuration Using the Net Driver

As opposed to the old master/slave mode demonstrated above, you can turn any com-
puter into an NIS slave by configuring with the NIS network driver turned on --enable-net.
The difference is that the NIS server has no explicit knowledge of the slaves. The NIS server
makes its information available via the net (NIS), and the NIS slaves read it. When the
NIS server is going to shutdown, it makes the information available to any NIS slave that
polls it, but the NIS server does not explicitly call each NIS slave as is the case in the
Master/Slave networking described several sections above.

Running in this configuration, you can use any computer with apcupsd running the
Network Information Server (NIS) as the server. The NIS slave simply uses the NIS informa-
tion to decide when to shutdown. This is a much simpler mode than the older master/slave
code mentioned above.

The main apcupsd (NIS server) is connected to the UPS and has NIS turned on, but
the configuration is a simple standalone as in the section A Simple Configuration for a
SmartUPS. It doesn’t matter how the UPS is connected to the computer (serial, USB, ...).

For the NIS slave computer, you will have a configuration that looks something like
what follows. What is important is that you get the information from an ether cable over
the network and you must specify the address of a "NIS server" that is running NIS (not
the Master/Slave networking described above). The NIS slave apcupsd will then poll the
NIS server at the NETTIME interval you specify to obtain the status.

Here are a few words from Adam Kropelin concerning the difference between the Mas-
ter/Slave networking and the NIS-based networking:

Think of the difference as push (Master/Slave) vs. pull (NIS-based). In the case of
M/S, the master makes all the shutdown decisions and notifies the slaves when they are to
shut down or when some other interesting event happens. The slaves just do whatever the
master says, whenever the master says to. On the other hand, with the NIS-based network
config you basically "publish" the UPS status from one server and then your clients view
that status and make their own decisions.

Personally, I like the NIS-based approach because the master knows nothing about the
slaves, thus there are fewer configuration files to keep in sync. I also like the flexibility of
allowing each slave to make its own decision on when to shut down; some of my old clunker
servers take quite a long while to shut down. There are problems reported occasionally
with the M/S approach, where slaves sometimes lose contact with the master or vice-versa.
I know improvements have been made in that code, but I still like the simplicity of using
NIS.

Chapter 4: Configuration Examples 42

Another thing to think about is how you feel about running a network service like NIS
on your firewall. My network is set up almost identically to yours and I chose to run the
apcupsd "master" on a server in the DMZ and have the firewall just be a client of it. That
way I don’t have to run NIS on the firewall apcupsd instance.

apcupsd.conf v1.1
UPSCABLE ether
UPSTYPE net
LOCKFILE /var/lock
DEVICE server-network-address:3551
UPSCLASS standalone
UPSMODE disable
NETTIME 10

where on the DEVICE directive you replace the server-network-address with the
fully qualified domain name or IP address of a machine running apcupsd with NIS enabled
(and normally, but not required, connected to a UPS). The :3551 that follows the NIS server
address is the port to use. The default is 3551, but older versions of apcupsd used port
7000.

Please do not confuse this NIS server/slave mode with the old master/slave network
configuration that is described above. This is a master/slave setup, but much simpler (the
NIS server does not know about the slaves), and any NIS server, even a slave, can act as a
server to a slave that listens to it.

The NETTIME directive defines the time interval that the slave uses to poll the NIS
server. If you set this too large, your slave may not see the change in state of the NIS
server before the server has shutdown. Normally, you have at least 30 seconds of grace time
between the time the NIS server decides to shutdown and the time it no longer responds.
Your slave must poll during this interval.

This mode works principally by reading the STATFLAG record that is sent by the NIS
(present in the output of apcaccess). The low 16 bits are the standard APC status flag,
and the upper 16 bits represent the internal state of apcupsd, so the slave can see when the
power fails and know when to shutdown.

As with the Master/Slave configuration, any slave run using the Net driver will shut-
down when its own timers expire or when the NIS server shuts down, whichever occurs
first. This means that if you want the slave to shutdown before the server, you need only
set BATTERYLEVEL, or any of the other values on the slave for a faster shutdown than
the values defined on the NIS server.

Chapter 5: Testing Apcupsd 43

5 Testing Apcupsd

The following testing procedures apply for the most part to apcsmart UPSes, whether
USB or serial. If you have a dumb voltage-signalling UPS, your testing procedures will be
somewhat different, and you should see the section on Testing Serial UPSes (see Chapter 22
[Testing Serial-Line UPSes], page 135).

5.1 Process-Status Test

After you start apcupsd, execute the following command:

ps fax

or the equivalent for your system. If you are running on Linux and using the fork()ing
version of apcupsd, you should something similar to the following output.

4492 ? S 0:00 apcmain -f /etc/apcupsd/apcupsd.conf
4496 ? S 0:00 _ apcser -f /etc/apcupsd/apcupsd.conf
4497 ? S 0:00 _ apcnis -f /etc/apcupsd/apcupsd.conf

This indicates that apcupsd is up and running and has started the two (default) child
processes. If you are running with the pthreaded version, now the default, and 2.4.x kernels,
you will still see the three processes (see below). However, under 2.6.x kernels, the threads
do not have independent process ids so everything will be compressed into a single ps line.

apcmain is the main program that waits until it receives a termination signal
(SIGTERM) or one of the child processes dies.

apcser is the process that manages the serial port and takes any actions (generates
events) that are necessary as a result of a change of state of the UPS.

apcnis is the Network information server process that provides EVENTS and STATUS
information over the network. This information is used by the CGI programs.

If you are running on a non-Linux system, or using pthreads on a Linux system (rec-
ommended), your output will probably not show the names of the processes and will appear
more like the following:

632 ? S 0:00 /sbin/apcupsd -f /etc/apcupsd/apcupsd.conf
841 ? S 0:00 _ /sbin/apcupsd -f /etc/apcupsd/apcupsd.conf
842 ? S 0:00 _ /sbin/apcupsd -f /etc/apcupsd/apcupsd.conf

If you see only one instance of apcupsd running, don’t worry about it as this is normal
on most non-Linux systems, and on Linux 2.6.x kernels.

If you do not find that apcupsd is in the above list, the most likely problem is a
configuration file glitch. If no messages were printed, you should check your system log
(normally ‘/var/log/messages’ where you will find one or messages indicating the nature
of the problem.

Chapter 5: Testing Apcupsd 44

5.2 Logging Test

Once you have established that the proper processes are running, do a tail of the system
log file, normally ‘/var/log/messages’:

tail /var/log/messages

You should see output that looks similar to the following:

Dec 5 17:01:05 matou apcupsd[5917]: apcupsd 3.7.2
startup succeeded

And if you have configured the network information server, you should also see:

Dec 5 17:01:05 polymatou apcupsd[5975]: apcserver
startup succeeded

These messages should also appear in the temporary file (‘/etc/apcupsd/apcupsd.events’)
if you are using the default configuration file. If you have installed the RPM, they will
probably be in ‘/var/log/apcupsd.events’.

5.3 apcaccess Test

This test consists of running apcaccess to see if apcupsd is properly updating its
internal variables. Please note that if you are running a pthreaded version of apcupsd,
which you should be since the non-pthreaded version is no longer supported, (installed
from rpm or --enable-pthreads on the ./configure line), you must enable the apcupsd
Network Information Server in your configuration file for apcaccess to work. This is done
by setting:

NETSERVER on
NISPORT 3551

in your apcupsd.conf file.
To run the apcaccess test, use the following command:

apcaccess status

Depending on the type of UPS you have, you will get slightly different output, but an
example For a Smart-UPS is as follows:

APC : 001,048,1088
DATE : Fri Dec 03 16:49:24 EST 1999
HOSTNAME : daughter
RELEASE : 3.7.2
CABLE : APC Cable 940-0024C
MODEL : APC Smart-UPS 600
UPSMODE : Stand Alone

Chapter 5: Testing Apcupsd 45

UPSNAME : SU600
LINEV : 122.1 Volts
MAXLINEV : 123.3 Volts
MINLINEV : 122.1 Volts
LINEFREQ : 60.0 Hz
OUTPUTV : 122.1 Volts
LOADPCT : 32.7 Percent Load Capacity
BATTV : 26.6 Volts
BCHARGE : 095.0 Percent
MBATTCHG : 15 Percent
TIMELEFT : 19.0 Minutes
MINTIMEL : 3 Minutes
SENSE : Medium
DWAKE : 000 Seconds
DSHUTD : 020 Seconds
LOTRANS : 106.0 Volts
HITRANS : 129.0 Volts
RETPCT : 010.0 Percent
STATFLAG : 0x08 Status Flag
STATUS : ONLINE
ITEMP : 34.6 C Internal
ALARMDEL : Low Battery
LASTXFER : Unacceptable Utility Voltage Change
SELFTEST : NO
STESTI : 336
DLOWBATT : 05 Minutes
DIPSW : 0x00 Dip Switch
REG1 : N/A
REG2 : N/A
REG3 : 0x00 Register 3
MANDATE : 03/30/95
SERIALNO : 13035861
BATTDATE : 05/05/98
NOMOUTV : 115.0
NOMBATTV : 24.0
HUMIDITY : N/A
AMBTEMP : N/A
EXTBATTS : N/A
BADBATTS : N/A
FIRMWARE : N/A
APCMODEL : 6TD
END APC : Fri Dec 03 16:49:25 EST 1999

For a simple signaling or dumb UPS such as BackUPS, your output will be very minimal
as follows:

APC : 001,012,0319

Chapter 5: Testing Apcupsd 46

DATE : Mon Feb 18 09:11:50 CST 2002
RELEASE : 3.8.5
UPSNAME : UPS_IDEN
CABLE : APC Cable 940-0128A
MODEL : BackUPS
UPSMODE : Stand Alone
STARTTIME: Mon Feb 18 09:11:45 CST 2002
LINEFAIL : OK
BATTSTAT : OK
STATFLAG : 0x008 Status Flag
END APC : Mon Feb 18 09:15:01 CST 2002

If you see the above output, it is a good sign that apcupsd is working. Assuming that
the output looks reasonable, check the following variables:

A very disturbing tendance is for some of the newer (Mar 2004) RS and ES UPSes to
have no Voltage information. This is annoying bug not serious. On the other hand, some of
those UPSes now have no battery charge information (BCHARGE). If BCHARGE is zero
in your listing and you are running a Smart or a USB UPS, then you will have to set the
BATTERYLEVEL directive in your apcupsd.conf file to -1.

LINEV This is the line voltage and it should be a value that is appropriate for your
equipment. In the USA, it is typically about 120 Volts while in Europe, it is
about 220 Volts.

BATTV Unless you have additional battery packs, this should be near 24 Volts plus or
minus 5 Volts.

STATUS This is the status of the UPS and it should normally be ONLINE.

If you see a message to the effect of:

attach_shmarea: shared memory version mismatch (or UPS not yet ready to report)

or if all the displayed values are zero, you have not waited long enough. Wait a bit
longer and then re-execute the apcaccess status command.

If you see a message to the effect of:

APCACCESS FATAL ERROR in apcaccess.c at line 336
tcp_open: cannot connect to server localhost on port 3551.

It means that you have probably not enabled the Network Information Server in your
configuration file for apcaccess to work. This is done by setting:

NETSERVER on
NISPORT 3551

in your apcupsd.conf file.

Chapter 5: Testing Apcupsd 47

5.4 Communications Test

At this point, you should ensure that apcupsd is handling the connection to the UPS
correctly. This test assumes you have a UPS that speaks apcsmart protocol, over either
USB or a serial port. If you have an old-style voltage-signaling UPS, please skip to the next
section (Simulated Power Fail Test).

When apcupsd detects a problem, it generates an EVENT, which consists of
sending a message to the system log then invoking the apccontrol script (normally in
‘/etc/acpupsd/apccontrol’) to handle the event.

In order to create an event, remove the serial port plug from the back of your com-
puter or from the back of the UPS. Within 6 seconds, apcupsd should detect the lack of
serial port communications and broadcast a wall message indicating that the serial port
communications was lost:

Warning communications lost with UPS lost.
At the same time, it sends the same message to the system log and to the temporary

EVENTS file (‘/etc/apcupsd/apcupsd.events’).
Plug the serial port plug back into your computer, and within about 12 seconds,

apcupsd should reestablish communications and broadcast and log the following message:
Communications with UPS restored.
If these messages are logged but not broadcast, either you have your mesg permission

set to no (see man wall or man mesg), or there is a problem with apccontrol. If you
are running a window manager such as GNOME and don’t have a console window
open, you may not receive the wall messages. However, you should find them in your
system log file (normally ‘/var/log/messages’ and in the temporary EVENTS file,
‘/etc/apcupsd/apcupsd.events’. For example, to observe these events in the temporary
EVENTS file, you might do a

tail -f /etc/apcupsd/apcupsd.events

Note, if you have installed from the RPM, the proper events file may be
‘/var/log/apcupsd.events’. You can find the actual filename by checking your
‘apcupsd.conf’ file.

before running the test.
If you do not observe these messages, you should correct this problem before proceeding

with additional tests.

5.5 Simulated Power Fail Test

At this point, you should verify that in the event of a power fail apcupsd properly calls
apccontrol. This test is appropriate for all models of UPSes (smart or dumb).

To avoid the possibility that apcupsd might shut down your system, locate where
apccontrol resides on your system (normally, ‘/etc/apcupsd/apccontrol’. Move this
script to another location e.g. ‘apccontrol.save’ and replace it with the script found
in ‘examples/safe.apccontrol’. When that is done, ensure that your UPS battery is fully

Chapter 5: Testing Apcupsd 48

charged and that you have at least 5 minutes of remaining runtime on the batteries. This
can be done by examining the values of the BATTCHG and TIMELEFT variables in the
printout of apcaccess status.

Athough this should not be necessary, as an extra precaution, you can shutdown your
machine, remove the plug from the UPS you are testing, and plug your machine into another
UPS or directly into the wall. Doing so, will ensure that the UPS doesn’t cut the power
to your machine at a bad time. Remember at the end of the testing to plug your machine
back into the UPS.

You can also minimize the risk from an unexpected shutdown by using a journaling
filesystem such as Linux’s EXT3. All modern disk drives park themselves safely when
they power down, rather than ploughing up oxide on your disk’s recording surface. Thus,
unexpected power less has to hit very narrow timing windows in order to trash an EXT3
transaction.

To begin the test, pull the power plug from the UPS. The first time that you do this,
psychologically it won’t be easy, but after you have pulled the plug a few times, you may
even come to enjoy it. If all goes well, apcupsd should detect the power failure and print
several warning messages. The first should appear after 5 to 6 seconds and read:

Warning power loss detected.

Then generally 6 seconds later, apcupsd is sure that it isn’t a transient effect, so it
sends:

Power failure. Running on UPS batteries.

After a few more seconds (total around 15 seconds), plug the power cord back in and
ensure that apcupsd is aware that the power has returned. It should print:

Power has returned...

If you do not observe the above messages, please correct the situation before proceeding.
The most likely cause of problems are:

apcupsd doesn’t recognize the power failure because the configuration directives are
not correct. E.g. wrong cable.
The file ‘/etc/apcupsd/apccontrol’ doesn’t exist or is not marked as executable.

At this point, we recommend that you do a simulated power down of your system. If
you are adventuresome or have been through this before, skip to the next section in this
manual and do the real power fail shutdown. If you continue with the simulated power down
and if all goes well, apcupsd will go through all the motions without actually shutting down
the system. Continue using the safe apccontrol that you installed. Edit the configuration
file ‘apcupsd’ and change the value of TIMEOUT from 0 to something like 30. Doing so
will cause apcupsd to attempt to shutdown the system 30 seconds after it detects a power
failure. Once this change has been made, you must stop and restart apcupsd for the new
configuration value to take effect.

Once again, pull the power plug, and if all goes as expected, apcupsd should attempt to
shutdown the system about 30 seconds after it detects the power failure. All the messages
should be displayed by wall or by the tail -f command. The precise message is determined

Chapter 5: Testing Apcupsd 49

by what is printed in ‘/etc/apcupsd/apccontrol’ for the doshutdown event. Though it
varies from system to system, it will generally be something like:

Beginning Shutdown Sequence

When apcupsd this message prints, reconnect the power. apcupsd should detect that
the power has been restored and attempt to cancel the shutdown.

IMPORTANT after this test, please replace the changed apccontrol and
‘apcupsd.conf’ with the original files.

5.6 System Shutdown Test

This is an intermediate test that you can do, for all UPS models before doing the
Full Power Down Test. First modify the ‘/etc/apcupsd/apccontrol’ file so that in the
killpower) case, the line that re-executes apcupsd with the --killpower option is com-
mented out. The original line probably looks something like:

${APCUPSD} --killpower

when it is commented out, it looks like:

#${APCUPSD}--killpower

Now when you pull the power plug, and either the timer expires or the batteries are
exhausted (see the next section for more details), the system should be fully shutdown.

After performing this test, please be sure to restore ‘/etc/apcupsd/apccontrol’ to its
previous state.

5.7 Full Power Down Test

To complete the testing, you should do a power fail shutdown of your system. This
test is applicable to all UPS models. Please do a backup of your system or take other
precautions before attempting this to avoid the possibility of lost data due to a problem
(I have been through this at least 10 times and never once had problems, but we all know
that someday something will go wrong).

Before proceeding, please ensure that your halt script or the equivalent has been prop-
erly updated by the install process to contain the logic to call apcupsd --killpower when
it detects a power failure situation (the presence of a ‘/etc/powerfail’ file). See the Chap-
ter 2 [Building and Installing apcupsd], page 20 of this manual, or the README files for
additional details about the halt modifications necessary.

When you are ready to do the test, either simply pull the plug and wait for the batteries
to become exhausted, or set the TIMEOUT configuration directive to something like 60 so
that the system will shutdown before the batteries are exhausted. We recommend doing
the full shutdown without using TIMEOUT to correctly simulate a real power failure, but
the choice is yours (I did it once here, but now use TIMEOUT 30).

If all goes well, your system should be shutdown before the batteries are completely
exhausted and the UPS should be powered off by apcupsd. Please be aware that if you do

Chapter 5: Testing Apcupsd 50

the full power down, you must ensure that your UPS is totally powered off. Otherwise, it
may have been given the command to power off, but due to a long grace period it is still
waiting. If you were to reboot your computer during the grace period, the UPS could then
suddenly turn off the power (this happened to me). To avoid this problem, always wait for
your UPS to power itself off, or power if off manually before restarting your computer. On
my system, the UPS is configured as at the factory to have a 180 second grace period before
shutting off the power. During this type of testing, 180 seconds seems like an eternity, so
please take care to either wait or manually power off your UPS. To determine what grace
period is programmed into your UPS EEPROM, run apcaccess eprom and look at the
"Shutdown grace delay".

5.8 Shutdown Sequence

If you experienced so problems with the above testing procedures, or if you are porting
apcupsd to another system, or you are simply curious, you may want to know exactly what
is going on during the shutdown process. If so, please see the Shutdown Sequence (see
Section 28.1 [Shutdown Sequence <1>], page 160) section of this manual.

5.9 apctest

apctest is a program that allows you to talk directly to your UPS and run certain low-
level tests, display all know values from the UPS’s EEPROM, perform a battery runtime
calibration, program the EEPROM (serial connection only), and enter in TTY mode with
the UPS. Here we describe how to use it for a USB or apcsmart UPS; see Section 22.2
[Using apctest on Serial-Line UPSses], page 137 for a description of how to use it with a
voltage-signalling UPS.

Shutdown apcupsd if it is running. Make sure your /etc/apcupsd/apcupsd.conf file has
UPSTYPE smart and UPSCABLE has one of the smart cables that are supported.

Normally apctest will have been built but not installed, so you must execute it from
the ‘<apcupsd-source>/src’ directory. You can explicitly build it on Unix with:

cd <apcupsd-source-directory>
make apctest
./apctest

or on Windows systems with:

make apctestwin32
./apctest

It will read your installed apcupsd.conf configuration (so it knows where to find the
UPS) and then it will present you with the following output:

2003-07-07 11:19:21 apctest 3.10.6 (07 July 2003) redhat
Checking configuration ...
Attached to driver: apcsmart

Chapter 5: Testing Apcupsd 51

sharenet.type = DISABLE
cable.type = CUSTOM_SMART

You are using a SMART cable type, so I’m entering SMART test mode
mode.type = SMART
Setting up serial port ...
Creating serial port lock file ...
Hello, this is the apcupsd Cable Test program.
This part of apctest is for testing Smart UPSes.
Please select the function you want to perform.

1) Query the UPS for all known values
2) Perform a Battery Runtime Calibration
3) Abort Battery Calibration
4) Monitor Battery Calibration progress
5) Program EEPROM
6) Enter TTY mode communicating with UPS
7) Quit

Select function number: 1

Item 1 will probe the UPS for all values known to apcupsd and present them in rather
raw format. This output can be useful for providing technical support if you are having
problems with your UPS.

Item 2 will perform a Battery Runtime Calibration. This test will only be performed
if your battery is 100% charged. Running the test will cause the batteries to be discharged
to approximately 30% of capacity. The exact number depends on the UPS model. In any
case, apctest will abort the test if it detects that the battery charge is 20% or less.

The advantage of doing this test is that the UPS will be able to recalibrate the remaining
runtime counter that it maintains in its firmware. As your batteries age, they tend to hold
less of a charge, so the runtime calibration may not be accurate after several years.

We recommend that perform a Battery Calibration about once a year. You should
not perform this calibration too often since discharging the batteries tends to shorten their
lifespan.

Item 3 can be used to abort a Battery Calibration in progress, if you some how became
disconnected.

Item 4 can be used to restart the monitoring of a Battery Calibration if you should
some how become disconnected during the test.

Item 5 is used to program the EEPROM. Please see the Section 26.6 [Configuration
Directives Used to Set the UPS EPROM], page 151 chapter of this manual for the details.

Item 6 will initiate a direct communication between your terminal and the UPS at
which point, you can enter raw UPS commands. Please be aware that you should be careful
what commands you enter because you can cause your UPS to suddenly shutdown, or you
can modify the EEPROM in a way to disable your UPS. The details of the raw Smart mode

Chapter 5: Testing Apcupsd 52

UPS commands can be found in the UPS Bible (see Chapter 29 [APC smart protocol],
page 165) chapter of this manual.

Item 7 will terminate apctest.

Chapter 6: Troubleshooting Your Installation 53

6 Troubleshooting Your Installation

6.1 Known Problems with USB UPSes

6.1.1 Some Cheaper Models Do Not Have Battery Charge

Unfortunately, some cheaper USB models do not seem to report BCHARGE in the
apcaccess output listing, which means with a standard conf file, your system will be imme-
diately shutdown. To correct this, set the BATTERYLEVEL directive in your apcupsd.conf
file to -1.

Some of these cheaper USB UPSes also do not report the Voltage. This is annoying
but does not cause the unit to malfunction.

of UPS Does Not Work, Some Cheaper Models Do Not Have Battery Charge, Known
Problems with USB UPSes,]

6.1.2 Reconnection does not clean up the lockfile

If either you disconnect the UPS or it disconnects because of some electrical problem,
it will most certainly reconnect with a different device number. Apcupsd will detect this
and reconnect properly. However, apcupsd does not release the old device (USB port) lock
file and create a new one. This is not too serious.

6.1.3 Power Off (killpower) of UPS Does Not Work

Currently (as of 3.10.6) the code to power off the UPS works only if you have a Linux
kernel version 2.4.22 or greater, or you have applied the patches in the examples directory
to your kernel.

of UPS Does Not Work, Known Problems with USB UPSes,]

6.1.4 apcupsd Cannot Reconnect After a Reboot

If apcupsd does not connect to the USB port when you reboot, it is probably the
appropriate kernel modules are not getting loaded correctly.

You can check this by bringing up your system, fiddling around until you get apcupsd
to work with the UPS, then doing cat /proc/modules andnd save the output some place.
Then reboot your computer and before you do anything else, do the cat /proc/modules
again. Most likely you will find some of the usb modules are missing in the second listing.

There are two solutions:
Ensure that you have the hotplug program loaded. It should fix the problem. This is
a bit of magic, so we are not exactly sure how it works. The rpm I (Kern) have loaded
is: hotplug-2001 02 14-15
You might want to read the man page on hotplug, and it might be necessary to cp
/etc/hotplug/usb.rc /etc/init.d/hotplug to get it fully working.

Chapter 6: Troubleshooting Your Installation 54

You can explicitly force the appropriate usb modules to be loaded by adding:

/sbin/modprobe <missing-module-name>

in the ‘/etc/rc.d/init.d/apcupsd’ script just after the start) case (at about line 17).
This will force the modules to be loaded before apcupsd is invoked.

Chapter 7: Monitoring and Tuning your UPS 55

7 Monitoring and Tuning your UPS

After you have verified that your UPS is working correctly, you will probably want to
query the state of its health occasionally. The tools apcupsd gives you to do this include
one command-line utility (apcaccess) and a GUI you can use through a Web browser. You
can also use apctest to tune some parameters of the UPS itself.

7.1 apcaccess

apcaccess is a program (normally found in ‘/sbin/apcaccess’) that permits you to
print out the complete status of your UPS. Although there are a number of command line
arguments (eprom, reconfig, status, slave, shutdown), all except eprom and status are under
development and hence do not work reliably.

If you have built apcupsd with pthreads enabled (default), apcaccess will use the Net-
work Information Server to obtain the necessary information for the status and eeprom
commands. This is because in the pthreaded version, there is no IPC shared memory. In
this case (pthreads enabled), you can specify a second optional argument to apcaccess in
the form of host:port, where the :port is optional. The default is localhost:3551. Please
note that in versions prior to 3.10.6, the default NIS port was 7000, so if you are mixing
versions, you will need to take a lot of care to ensure that all components are using the
same port.

To enable the apcupsd Network Information Server, which is normally the default, you
set:

NETSERVER on
NISPORT 3551

in your apcupsd.conf file.

7.1.1 apcaccess status

As mentioned above, the full form of the command is:

apcaccess status localhost:3551

where only apcaccess status should normally be needed. localhost may be replaced by
any machine name, fully qualified domain name, or IP address, which means that apcaccess
can access any UPS on the network running the Network Information Server.

The status command line option of apcaccess will produce a full printout of all the
STATUS variables used by apcupsd. This can be very helpful for checking the condition
of your UPS and to know whether or not apcupsd is properly connected to it. For a
complete description of the variables and their meanings, please read the Status Format
(see Chapter 27 [apcupsd Status Logging], page 154) section of the Technical Reference.

Please note that if you invoke apcaccess within the first 30 seconds of launching
apcupsd, you will likely get an error message such as:

Chapter 7: Monitoring and Tuning your UPS 56

APCACCESS FATAL ERROR in apcipc.c at line 325
attach_shmarea: shared memory version mismatch

This is because apcupsd is still in the process of initializing the shared memory segment
used to communicate between the two processes. There is also a small window of time after
which the memory segment is properly initialized but before the UPS has been completely
polled. If you invoke apcaccess during this period, you will get the STATUS output, but
with many of the values zero. The solution is to wait at least 30 seconds after starting
apcupsd before launching apcaccess.

To invoke apcaccess, enter:

apcaccess status

For a SmartUPS 1000 apcaccess will emit the following output:

DATE : Fri Dec 03 12:34:26 CET 1999
HOSTNAME : matou
RELEASE : 3.7.0-beta-1
CABLE : Custom Cable Smart
MODEL : SMART-UPS 1000
UPSMODE : Stand Alone
UPSNAME : UPS_IDEN
LINEV : 232.7 Volts
MAXLINEV : 236.6 Volts
MINLINEV : 231.4 Volts
LINEFREQ : 50.0 Hz
OUTPUTV : 232.7 Volts
LOADPCT : 11.4 Percent Load Capacity
BATTV : 27.7 Volts
BCHARGE : 100.0 Percent
MBATTCHG : 5 Percent
TIMELEFT : 112.0 Minutes
MINTIMEL : 3 Minutes
SENSE : Low
DWAKE : 060 Seconds
DSHUTD : 180 Seconds
LOTRANS : 204.0 Volts
HITRANS : 253.0 Volts
RETPCT : 050.0 Percent
STATFLAG : 0x08 Status Flag
STATUS : ONLINE
ITEMP : 29.2 C Internal
ALARMDEL : Low Battery
LASTXFER : U command or Self Test
SELFTEST : NO
STESTI : 336
DLOWBATT : 02 Minutes

Chapter 7: Monitoring and Tuning your UPS 57

DIPSW : 0x00 Dip Switch
REG1 : 0x00 Register 1
REG2 : 0x00 Register 2
REG3 : 0x00 Register 3
MANDATE : 01/05/99
SERIALNO : GS9902009459
BATTDATE : 01/05/99
NOMOUTV : 230.0
NOMBATTV : 24.0
HUMIDITY : N/A
AMBTEMP : N/A
EXTBATTS : 0
BADBATTS : N/A
FIRMWARE : 60.11.I
APCMODEL : IWI
END APC : Fri Dec 03 12:34:33 CET 1999

For the various smaller, cheaper APC USB UPSes, such as the CS, ES, ..., you will get
much of the information that is presented above, but not all of it. For example, you will not
get MAXLINEV, MINLINEV, LINEFREQ, ... and in particular, the LOADPCT will be
zero when you are running on mains. LOADPCT will display when the UPS is on batteries.
You must remember that the non-SmartUPSes are much simpler (and less expensive) and
therefore produce less information.

7.1.2 apcaccess eprom

The eprom command line option for apcaccess allows you to examine the current
values of your UPS’ EPROM as well as to know the permitted values that can be set in the
EPROM. For information about changing these values, see the section on tuning EEPROM
parameters (see Section 7.6 [Configuring Your EEPROM], page 66).

A typical output from apcaccess eprom is:

Valid EPROM values for the SMART-UPS 1000

Config Current Permitted
Description Directive Value Values
===
Upper transfer voltage HITRANSFER 253 253 264 271 280
Lower transfer voltage LOTRANSFER 208 196 188 208 204
Return threshold RETURNCHARGE 15 00 15 50 90
Output voltage on batts OUTPUTVOLTS 230 230 240 220 225
Sensitivity SENSITIVITY H H M L L
Low battery warning LOWBATT 2 02 05 07 10
Shutdown grace delay SLEEP 180 020 180 300 600
Alarm delay BEEPSTATE T 0 T L N
Wakeup delay WAKEUP 60 000 060 180 300
Self test interval SELFTEST 336 336 168 ON OFF

Chapter 7: Monitoring and Tuning your UPS 58

7.2 Apcupsd Notification and Events

When a major event is generated within apcupsd, control is passed to the script
‘apccontrol’ normally found in ‘/etc/apcupsd/apccontrol’. The event name, and a
number of other important parameters are passed to the script.

The major function of the ‘apccontrol’ script is to performa a shutdown of the system
(as well as the killpower operation). In addition, another major task for this script is to
notify you by email when certain events such as powerfail occur.

Since ‘apccontrol’ is a script, you can customize it to your own needs using any text
editor. To do so, you must have a minimal knowledge of Unix shell programming. In
addition, another feature is that you can write your own scripts that will be automatically
called by ‘apccontrol’ before any of its own code is executed. Details of the events and
how to program them are contained in the Advanced topics section entitled Customizing
Event Handling (see Chapter 11 [Customizing Event Handling], page 82).

Programs, Apcupsd Notification and Events, Monitoring and Tuning your UPS,]

7.3 hid-ups and USB Specific Information

The UPS has an internal set of timers and remaining capacity counters, which it uses
to determine when to shutdown. These are in addition to the apcupsd counters BAT-
TERYLEVEL and MINUTES. As a consequence, apcupsd will shutdown on the first limit
that triggers (either an apcupsd limit, or a UPS limit). The UPS internal counter equiva-
lent to BATTERYLEVEL can be found in the hid-ups report as RemainingCapacityLimit,
which is typically factory set to 10 percent. In addition, the Low Battery signal is normally
given by the UPS when less than 2 minutes of run time remain.

7.4 apcupsd Network Monitoring (CGI) Programs

With this release, there are five CGI programs (multimon.cgi, multimoncss.cgi, up-
sstats.cgi, upsfstats.cgi, and upsimage.cgi). To have them properly installed, you must run
the ./configure command with --enable-cgi and you should specify an installation di-
rectory with --with-cgi-bin= or load them manually. To install the Cascading Style Sheet,
which is used by multimoncss.cgi, you must use the --with-css-dir= option. The default
directory for installation of the CGI programs is ‘/etc/apcupsd’, which is not really where
you want them if you are going to use them. Normally, they should go in the ‘cgi-bin’ of
your Web server.

Once built and loaded, they will give you the status of your UPS or UPSes over the
network.

Normally only multimon.cgi or multimoncss.cgiis directly invoked by the user. How-
ever, it is possible to directly invoke upsstats.cgi and upsfstats.cgi. upsimage.cgi should
never be directly invoked as it is used by upsstats.cgi to produce the bar charts.

Programs, Monitoring and Tuning your UPS,]

Chapter 7: Monitoring and Tuning your UPS 59

7.5 Setting up and Testing the CGI Programs

7.5.1 Network Information Server (NIS)

Before using multimon and the other CGI programs, first ensure that apcupsd is con-
figured to run the Network Information Server. This is done by setting NETSERVER on in
‘/etc/apcupsd/apcupsd.conf’. This switch is on by default. If you are unsure of its state,
see the section at the end of this chapter concerning the Client test program.

Next you must edit the ‘hosts’ file ‘/etc/apcupsd/hosts.conf’ and at the end, add
the name of the hosts you want to monitor and a label string for them. Kern Sibbald
uses ‘multimon.conf’ unmodified from what is on the source distribution. However, he has
modified the hosts.conf file to contain the following three lines:

MONITOR matou "Server"
MONITOR polymatou "Backup server"
MONITOR deuter "Disk server"

matou, polymatou, and deuter are the network names of the three machines currently
running apcupsd. Please note that the network names may either be IP addresses or fully
qualified domain names. The network name (or IP address) may optionally be followed
by :<port>, where the port is the NIS port address you wish to use. This is useful if you
are running multiple copies of apcupsd on the same system or if you are running in a
mixed vendor environment where the NIS port assignments differ. An example could be
the following:

MONITOR matou "Server"
MONITOR polymatou "Backup server"
MONITOR deuter "Disk server"
MONITOR polymatou:7001 "APC USB UPS"

where the USB copy of apcupsd has been configured to use port 7001 (with --with-
nis-port=7001 on the ./configure or by modifying ‘apcupsd.conf’). Note, the default
NIS port is 3551 on most platforms.

To test multimon.cgi, you can execute it as non-root directly from the source cgi build
directory. To do so, enter at a shell prompt:

./multimon.cgi

If everything is set up correctly, it will print a bunch of HTML with the values of the
machines that you have put in the ‘hosts.conf’ file. It should look something like the
following (note, only a small portion of the output is reproduced here):

Content-type: text/html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.org/TR/REC-html40/loose.dtd">

<HTML>

Chapter 7: Monitoring and Tuning your UPS 60

<HEAD><TITLE>Multimon: UPS Status Page</TITLE></HEAD>
<BODY BGCOLOR="#FFFFFF">
<TABLE BGCOLOR="#50A0A0" ALIGN=CENTER>
<TR><TD>
<TABLE CELLPADDING=5>
<TR>
<TH COLSPAN=10 BGCOLOR="#60B0B0">
APCUPSD UPS Network Monitor

Sun Jan 16 12:07:27 CET 2000</TH>
</TR>
<TR BGCOLOR="#60B0B0">
<TH COLSPAN=1>System</TH>
<TH COLSPAN=1>Model</TH>
<TH COLSPAN=1>Status</TH>
...

If you do not get similar output, check the permissions of the ‘/etc/apcupsd’ directory
and of those of ‘/etc/apcupsd/hosts.conf’ to ensure that your web server can access it.
At many sites such as mine, the Apache server is not running as root, so you must be careful
to ensure that that ‘/etc/apcupsd/hosts.conf’ and ‘/etc/apcupsd/multimon.conf’ are
world readable.

To invoke multimon in your Web browser, enter:

http://<your-site>/cgi-bin/multimon.cgi

You should get something similar to the screen shot shown below.

If you wish additional control over the colors, type faces, and sizes of the multimon
output, you might wish to use multimoncss.cgi in place of multimon. In this case, you simply
edit the ‘multimon.css’ file to specify the styles you prefer. There are several sample Style
Sheet files in the ‘cgi’ subdirectory of the source tree.

To see a working example of the these programs, visit http://www.apcupsd.com/cgi-bin/multimon.cgi
or http://www.apcupsd.com/cgi-bin/multimoncss.cgi

, Setting up and Testing the CGI Programs,]

http://www.apcuspd.com/cgi-bin/multimon.cgi
http://www.apcupsd.com/cgi-bin/multimoncss.cgi

Chapter 7: Monitoring and Tuning your UPS 61

7.5.2 multimon.cgi

This program monitors multiple UPSes at the same time. A typical output of multi-
mon.cgi as displayed in your Web browser might look like the following:

The machines monitored as well as the values and their column headings are all con-
figurable (see ‘/etc/apcupsd/hosts.conf’ and ‘/etc/apcupsd/multimon.conf’)

Chapter 7: Monitoring and Tuning your UPS 62

7.5.3 upsstats.cgi

By clicking on the system name in the multimon.cgi display, you will invoke upsstats.cgi
for the specified system, which will produce a bar graph display of three of the monitored
values. For example,

You can display different bar graphs by selecting different variables from the drop down
menus at the top of each of the three bar graphs.

As with multimon, if you have your local host configured in the
‘/etc/apcupsd/hosts.conf’ file, you can execute it from a Unix shell from the
source cgi directory as follows:

Chapter 7: Monitoring and Tuning your UPS 63

7.5.4 ./upsstats.cgi

As with multimon, quite a few lines of html should then be displayed.

7.5.5 upsfstatus.cgi

If you would like to see all of the STATUS variables available over the network, click
on the Data field of the desired system, and your browser will display something like the
following:

APC : 001,048,1109
DATE : Thu Dec 02 17:27:21 CET 1999
HOSTNAME : matou.sibbald.com
RELEASE : 3.7.0-beta-1
CABLE : Custom Cable Smart
MODEL : SMART-UPS 1000
UPSMODE : Stand Alone
UPSNAME : UPS_IDEN
LINEV : 223.6 Volts
MAXLINEV : 224.9 Volts
MINLINEV : 222.3 Volts
LINEFREQ : 50.0 Hz
OUTPUTV : 223.6 Volts
LOADPCT : 6.2 Percent Load Capacity
BATTV : 27.9 Volts
BCHARGE : 100.0 Percent
MBATTCHG : 5 Percent
TIMELEFT : 167.0 Minutes
MINTIMEL : 3 Minutes
SENSE : High
DWAKE : 060 Seconds
DSHUTD : 020 Seconds
LOTRANS : 196.0 Volts
HITRANS : 253.0 Volts
RETPCT : 050.0 Percent
STATFLAG : 0x08 Status Flag
STATUS : ONLINE
ITEMP : 35.1 C Internal
ALARMDEL : Low Battery
LASTXFER : U command or Self Test
SELFTEST : NO
STESTI : 336
DLOWBATT : 02 Minutes
DIPSW : 0x00 Dip Switch
REG1 : 0x00 Register 1
REG2 : 0x00 Register 2

Chapter 7: Monitoring and Tuning your UPS 64

REG3 : 0x00 Register 3
MANDATE : 01/11/99
SERIALNO : GS9903001147
BATTDATE : 01/11/99
NOMOUTV : 230.0
NOMBATTV : 24.0
HUMIDITY : N/A
AMBTEMP : N/A
EXTBATTS : 0
BADBATTS : N/A
FIRMWARE : 60.11.I
APCMODEL : IWI
END APC : Thu Dec 02 17:27:25 CET 1999

You should get pretty much the same output mixed in with html if you execute upsfs-
tats.cgi directly from a Unix shell in the cgi subdirectory as explained above for upsstats.cgi
and multimon.cgi.

7.5.6 Working Example

To see a working example of the above programs, visit http://www.apcupsd.com/cgi-bin/multimon.cgi.

7.5.7 Client Test Program

When your Network Information Server is up and running, you can test it using a
simple program before attempting to access the server via your Web server. The test
program is called ‘client.c’ and can be found in the ‘examples’ subdirectory of the source
distribution. To build the program, when in the examples directory, use something like the
following:

cc client.c ../lib/libapc.a -o client

Then execute it:

./client <host>[:<port>] [<command>]

Where host is the name of the host or the IP address of the host running the Network
Information Server. The default is the local host. You may optionally specify a port
address separated from the host name with a colon. You may also optionally specify a
single command to be executed. If you specify a command, that command will be executed
and the client program will exit. This is a very simple and useful way of pulling the status
or events data into another program such as Perl.

If no error messages are printed, it has most likely established contact with your server.
Anything that you type as standard input will be passed to the server, and anything the
server sends back will be printed to standard output. There are currently two commands
recognized by the server: events and status. Hence the following commands:

./client

http://www.apcupsd.com/cgi-bin/multimon.cgi

Chapter 7: Monitoring and Tuning your UPS 65

status
events
xyz
^D

should produce the status listing (the same as produced by apcaccess status), fol-
lowed by the list of the last 10 events (in response to the events command), and finally
Invalid command in response to the xyz input, which is not a valid command. The control-
D terminates the client program.

The purpose of this program is to show you how to write your own program that can
determine the status of apcupsd and act any way you want (e.g. send you email messages
on certain events like line voltage boost, ...).

7.5.8 A Tip from Carl Erhorn for Sun Systems

It is possible to run the CGI code to monitor your UPS using the answerbook HTTP
server that runs on Solaris. As long as your server has the Answerbook2 web server installed
and running, you can insert the cgi scripts into the cgi directory of the web server, and access
the cgi using something like:

http://hostname:8888/cgi/multimon.cgi

7.5.9 Credits

Many thanks go to Russell Kroll <rkroll at exploits.org> who wrote the CGI programs
to work with his UPS Monitoring system named Network UPS Tools (NUT). Thanks also
to Jonathan Benson <jbenson at technologist.com> for initially adapting the upsstatus.cgi
program to work with apcupsd.

We have enhanced the bar graph program and hope that our changes can be useful to
the original author in his project.

7.5.10 Security Issues

apcupsd runs as root.
If you have NETSERVER ON in your ‘apcupsd.conf’ file (which is the deault), be
aware that anyone on the network can read the status of your UPS. This may or may
not pose a problem. If you don’t consider this information privileged, as is the case for
me, there is little risk. In addition, if you have a firewall between your servers and the
Internet, crackers will not have access to your UPS information. Additionally, you can
restrict who can access your apcupsd server by using inted to run the sservice and using
access control lists with a TCP wrapper or by configuring TCP wrappers in apcupsd
(see below for TCP Wrapper details).
If you are running master/slave networking with a single UPS powering multiple ma-
chines, be aware that it is possible for someone to simulate the master and send a
shutdown request to your slaves. The slaves do check that the network address of
the machine claiming to be the master is that same as the address returned by DNS
corresponding to the name of the master as specified in your configuration file.

http://www.exploits.org/nut/library/apcsmart.html

Chapter 7: Monitoring and Tuning your UPS 66

7.5.10.1 TCP Wrappers

As of apcupsd version 3.8.2, TCP Wrappers are implemented if you turn them on when
configuring (./configure --with-libwrap). With this code enabled, you may control who
may access your apcupsd via TCP connections (the Network Information Server, and the
Master/Slave code). This control is done by modifying the file: ‘/etc/hosts.allow’. This
code is implemented but untested. If you use it, please send us some feedback.

7.6 Configuring Your EEPROM

If you have a SmartUPS, there are depending on the UPS at least 12 different values
stored in the EEPROM that determine how the UPS reacts to various conditions such as
high line voltage, low line voltage, power down grace periods, etc.

In general, for the moment, we do not recommend that you change your EEPROM
values unless absolutely necessary. There have been several reported cases of problems
setting the Low Transfer Voltage. Consequently, if at all possible, do not attempt to change
this value.

If despite these warnings, you must change your EEPROM, we recommend connecting
your UPS to a Windows or NT machine running PowerChute and making the changes.

7.6.1 apcupsd No Longer Configures EEPROM

Unlike version 3.8.6, apcupsd version 3.10.x no longer has code to program the EEP-
ROM. Instead we have implemented interactive EEPROM modification code in the apctest
program. EEPROM programming must be done with apcupsd stopped so that apctest can
access the UPS. In addition, EEPROM programming is currently implemented only for
UPSes using the Smart protocol running in serial mode. Perhaps at a later time when the
appropriate kernel modifications are standard, we will extend EEPROM programming to
USB models.

Before changing your EEPROM, you should make a printed copy of the current state
of your UPS before any EEPROM changes so that you can check the changes that you have
made. Do so by printing a copy of the output from apcaccess status and also print a
copy of the output from apcaccess eprom.

Once this is done, choose which values of the EEPROM you want to change. Typical
output from apcaccess should look like the following:

apcaccess eeprom

Valid EPROM values for the SMART-UPS 1000

Config Current Permitted
Description Directive Value Values
==
Upper transfer voltage HITRANSFER 253 253 264 271 280
Lower transfer voltage LOTRANSFER 196 196 188 208 204

Chapter 7: Monitoring and Tuning your UPS 67

Return threshold RETURNCHARGE 0 00 15 50 90
Output voltage on batts OUTPUTVOLTS 230 230 240 220 225
Sensitivity SENSITIVITY H H M L L
Low battery warning LOWBATT 2 02 05 07 10
Shutdown grace delay SLEEP 20 020 180 300 600
Alarm delay BEEPSTATE 0 0 T L N
Wakeup delay WAKEUP 0 000 060 180 300
Self test interval SELFTEST 336 336 168 ON OFF

where the Current Value will depend on how your UPS is configured, and the Permitted
Values will depend on what UPS model you have.

7.6.2 Using apctest to Configure Your EEPROM

To make the EEPROM changes with apctest you must first stop the apcupsd daemon

apctest is not installed during the installation process, so to use it you will need to do
the following after having built apcupsd:

cd <apcupsd-source>/src
su
<root-password>
./apctest

At that point, you should get output similar to the following:

2003-07-07 11:19:21 apctest 3.10.6 (07 July 2003) redhat
Checking configuration ...
Attached to driver: apcsmart
sharenet.type = DISABLE
cable.type = CUSTOM_SMART

You are using a SMART cable type, so I’m entering SMART test mode
mode.type = SMART
Setting up serial port ...
Creating serial port lock file ...
Hello, this is the apcupsd Cable Test program.
This part of apctest is for testing Smart UPSes.
Please select the function you want to perform.

1) Query the UPS for all known values
2) Perform a Battery Runtime Calibration
3) Abort Battery Calibration
4) Monitor Battery Calibration progress
5) Program EEPROM
6) Enter TTY mode communicating with UPS
7) Quit

Chapter 7: Monitoring and Tuning your UPS 68

Select function number:

You might want to run option 1) just to ensure that apctest is properly talking to your
UPS. It will produce quite about 70 lines of output.

To program the EEPROM, select option 5), and you will get the EEPROM menu as
follows:

This is the EEPROM programming section of apctest.
Please select the function you want to perform.

1) Print EEPROM values
2) Change Battery date
3) Change UPS name
4) Change sensitivity
5) Change alarm delay
6) Change low battery warning delay
7) Change wakeup delay
8) Change shutdown delay
9) Change low transfer voltage
10) Change high transfer voltage
11) Change battery return threshold percent
12) Change output voltage when on batteries
13) Change the self test interval
14) Set EEPROM with conf file values
15) Quit

Select function number:

If you wish to use the old pre-3.10.x method of EEPROM programming with values
specified in the ‘apcupsd.conf’ file, select option 14). However, we recommend that you
start with item 1) to see what EEPROM values apctest finds. This command can take a
few minutes to run, so be patient. The values printed should be the same as what you
got using apcaccess, but in addition, the EEPROM battery date and UPS Name should be
displayed. For example:

Select function number: 1

Doing prep_device() ...

Valid EEPROM values for the SMART-UPS 1000

Config Current Permitted
Description Directive Value Values
===
Upper transfer voltage HITRANSFER 253 253 264 271 280
Lower transfer voltage LOTRANSFER 196 196 188 208 204
Return threshold RETURNCHARGE 0 00 15 50 90
Output voltage on batts OUTPUTVOLTS 230 230 240 220 225

Chapter 7: Monitoring and Tuning your UPS 69

Sensitivity SENSITIVITY H H M L L
Low battery warning LOWBATT 2 02 05 07 10
Shutdown grace delay SLEEP 20 020 180 300 600
Alarm delay BEEPSTATE 0 0 T L N
Wakeup delay WAKEUP 0 000 060 180 300
Self test interval SELFTEST 336 336 168 ON OFF
===
Battery date: 07/31/99
UPS Name : UPS_IDEN

At this point, you can select any item from 2) to 13) to modify the appropriate value.
You will shown the existing value and prompted for the new values.

We recommend that you change the EEPROM as little as is absolutely necessary since
it is a somewhat delicate process that has occasionally produced problems (i.e. improper
EEPROM values are displayed after the update). Fortunately this seems to be quite rare
and was much more likely to occur with the old "batch" like process especially if incorrect
values were supplied.

Chapter 8: Maintaining Your UPS 70

8 Maintaining Your UPS

If you have your UPS long enough, you will probably have battery problems. Below,
you will find some suggestions for replacing batteries. One important note of caution: at
least one user purchased one of the non-APC batteries noted below and found out that they
would not fit into his unit. This required cutting and soldering and other very undesirable
things, so be extremely careful in measuring the batteries including every millimeter of the
terminal connections which can cause problems.

Although you can do a hot swap of your batteries while the computer is running, it
may not be very satisfactory because the unit will not know that the batteries have been
swapped and apcupsd will continue to show Low Battery. To correct this situation, you
must do a discharge and recharge of the battery followed by a battery recalibration using
apctest. At that point the battery should be calibrated better. As noted below, Carl has
found that it takes several discharge/charges before the runtime calibration is accurate.
Take care not to discharge your battery too much as it tends to shorten the battery life.

8.1 What Various People Have to Say about Batteries

Here is what John Walker has to say about APC UPS batteries:
I thought I’d pass on some information I’ve obtained which you’ll probably
eventually need. Besides, by writing it down I’ll be able to find it the next
time. I started installing mine in 1995-1996. Lead-acid batteries have a finite
life even if not subjected to deep discharge cycles. For the batteries used by
APC, this is typically four to six years. As part of the self-test cycle, the UPS
measures the voltage of the battery at full charge (which falls as the battery
ages), and if it’s below about 90% of the value for a new battery, it sets off
the "Replace battery" alarm, which it repeats every day. [on apcupsd versions
prior to 3.8.0, this message is sent once, on version 3.8.0, it is sent every 9 hours
- KES]. You will occasionally get a false alarm. It’s a good idea if you get an
alarm to repeat the self-test the next day and see if the alarm goes away. If
the alarm is persistent, you need to replace the batteries, which can be done
without powering down the UPS or load-you just open up the battery door,
take out the old batteries, and hook up the new ones.
APC makes "Replacement Battery Units" for each of the SmartUPS models,
but they sell them directly only in the U.S.
It’s best to wait until the low battery alarm before ordering a replacement-
keeping batteries on the shelf reduces their life unless you keep them fully
charged.

And Andre Hendrick says:
[For replacement batteries] You need to goto you your local Yamaha SeaDoo
shop. There are 35 AMP Hour deep cycle marine batteries that are direct
replacements. These are gel-cel and will double the runtime and/or cut your
recharge time in half.

Jet Works

Chapter 8: Maintaining Your UPS 71

1587 Monrovia Ave.
Newport Beach CA 9266?
Tel: +1 714 548-5259

J-W Batteries, Inc.
Tel: +1 714 548-4017

WPS 49-1200
GEL-CELL KB-35 BATTERY

For those that do not know what this means........ I found the best battery for
APCC UPS products that use In the two systems below:

SMART-UPS 3000 10.9% is running at 327W runs for 47.0 min.
Smart-UPS 1250 22.3% is running at 279W runs for 54.0 min.

APCUPSD UPS Network Monitor
Thu Jan 18 21:55:36 PST 2001
System Model Status Battery Chg Utility UPS Load UPS Temp Batt. Run Time Data
Linux ATA Development SMART-UPS 3000 ONLINE

100.0 % 120.2 VAC 10.9 % 36.9 C 47.0 min. All data
Linux ATA Development II APC Smart-UPS 1250 ONLINE

100.0 % 119.6 VAC 22.3 % 45.9 C 54.0 min. All data

Look at the numbers and see that these batteries are better and have more
total running energy than standard ones.

SMART-UPS 3000 10.9% is running at 327W runs for 47.0 min.
Smart-UPS 1250 22.3% is running at 279W runs for 54.0 min.

APCUPSD UPS Network Monitor
Thu Jan 18 22:00:45 PST 2001
System Model Status Battery Chg Utility UPS Load UPS Temp Batt. Run Time Data
Linux ATA Development SMART-UPS 3000 ONLINE

100.0 % 120.2 VAC 19.2 % 36.9 C 27.0 min. All data
Linux ATA Development II APC Smart-UPS 1250 ONLINE

100.0 % 119.6 VAC 21.8 % 45.9 C 55.0 min. All data

SMART-UPS 3000 19.2% is running at 576W runs for 27.0 min.
Smart-UPS 1250 21.8% is running at 273W runs for 55.0 min.
Smart-UPS 1250 46.1% is running at 576W runs for 26.0 min.

Kind of cool.

The 1250 can outrun the 3000 by a factor of two under identical percentages,
or run head to head for the same time.

SMART-UPS 3000 is a 48V based or 4 batteries. Smart-UPS 1250 is a 24V
based or 2 batteries.

Chapter 8: Maintaining Your UPS 72

Cheers,

Andre Hedrick
Linux ATA Development

Finally, here is what Carl Erhorn has to say about batteries:

Hi, Folks.

Well, Kern was absolutely right. The problem with my UPS was batteries. It
was unexpected though, because there was no indication of a bad battery right
up until the UPS failed entirely.

For those who might encounter the same thing, and don’t know what’s hap-
pening (I didn’t either), here’s what happened.

A week or so ago, I turned on one of my SmartUPS 700-NET models. The
load is a small dual P-III unix server (Solaris 8, X86) and a 4MM tape drive.
During the normal selftest that runs when you first turn on any APC UPS, the
UPS ’freaked out’. The alarm stuttered at about 4 or 5 beeps per second, and
all the panel lights flashed spasmodically, as if something was loose inside the
UPS.

I turned off the UPS and it’s load, then turned the UPS on again. This time,
everything seemed fine. I booted the system that was attached, and there were
no problems. The status monitor showed 9 minutes runtime (which indicates
fairly low capacity), but the batteries showed fully charged. I began to suspect
a bad inverter in the UPS.

However, Kern told me that he suspected the batteries. So I took the UPS
offline, put an old SU-600 in it’s place (just barely big enough to handle the
startup peaks - I get an ’overload’ lamp lit for about 2 seconds during boot),
and checked out the batteries. They did indicate that they were near the end
of life, so I ordered a replacement set. Those came in on Friday, and after the
initial charge, a complete charge/discharge cycle to recalibrate the UPS, and
some testing, I put it back in service.

Surprise! (Or maybe not?) Kern was right - there is nothing wrong with the
inverter or the charging circuit, and the new cells fixed everything.

What confused me is that there was no ’replace battery’ indication from the
UPS, even when it failed, plus a fair amount of runtime indicated with a full
charge. So if you see such behavior on one of your UPS models, it makes sense
to replace the batteries, even if there is no indication that the batteries have
failed yet.

One of the things I learned during this process is that the UPS internal cali-
bration will lose accuracy over the life of the battery. I always do a recalibrate
when I install new cells, but rarely do it after that, as it’s time-consuming, and
you really can’t use the system attached to the UPS while doing it. Since my
systems are almost constantly in use, it’s a pain to schedule a recal, and I tend
to put it off. This time it bit me. I’d suggest that folks do a recal at least once
every six months. It will make your runtime estimates much more accurate,
and also allows you to keep track of the state of your batteries.

Chapter 8: Maintaining Your UPS 73

For those who don’t know how to do this, here’s what you do. This procee-
dure should not be confused with the ’Recalibrate’ feature in the APC Power-
chutePlus software. They do not do the same thing.

>From APC’s web site:

Perform a Runtime Calibration. This is a manual procedure and should not
be confused with the runtime calibration performed through PowerChute plus.
The batteries inside of the Smart-UPS are controlled by a microprocessor within
the UPS. Sometimes it is necessary to reset this microprocessor, especially after
the installation of new batteries. Stop the PowerChute plus software from
running and disconnect the serial cable. There must be at least a 30% load
attached to the UPS during this procedure, but the process will cause the UPS
to shut off and cut power to its outlets. Therefore, attach a non-critical load
to the UPS and then force the UPS on battery by disconnecting it from utility
power. Allow the unit to run on battery until it turns off completely. Make
sure a 30% load is present! Plug the UPS back into the wall outlet and allow it
to recharge (it will recharge more quickly turned off and with no load present).
Once the unit has recharged, the "runtime remaining" calculation should be
more accurate. Remember that if the unit is an older model, then the runtime
will not improve significantly.

Background:

An APC Smart-UPS has a microprocessor which calculates runtime primarily
based on the load attached to the UPS and on its battery capacity. On the
right side of the front display panel there is a vertical graph of five LEDs. Each
LED is an indication of battery charge in increments of twenty percent: 20, 40,
60, 80, 100% (bottom to top). For example, if the battery charge is 99%, then
only four of the five LEDs are illuminated.

To ensure that an operating system receives a graceful shutdown when using
PowerChute plus or a SmartSlot accessory, an alert is generated by the Smart-
UPS indicating that the UPS has reached a low battery condition. The alert is
audible (rapid beeping), visual (flashing battery LED or LEDs), and readable
through the graphical interface of PowerChute plus software (or a native UPS
shutdown program within a particular operating system.) In order to calculate
this "low battery condition," all Smart-UPS products have a preconfigured low
battery signal warning time of two minutes (this is the factory default setting).
There are a total of four user-changeable settings: 2, 5, 7, or 10 minutes. If
the low battery signal warning time is set for 2 minutes, then the alerts will
activate simultaneously two minutes prior to shutdown. Similarly, if the total
runtime for a particular UPS is 30 minutes with a low battery signal warning
time set at 10 minutes, then the UPS will run on battery for 20 minutes before
the low battery alert begins.

Total runtime is primarily based on two factors, battery capacity and UPS load.
UPS load and runtime on battery are inversely proportional: as load increases,
battery runtime decreases and vice versa. When utility power is lost, the UPS
begins discharging the battery in order to support the attached load. Once
power returns, the Smart-UPS will automatically begin to recharge its battery.

Chapter 8: Maintaining Your UPS 74

My comments on this proceedure:

I believe this proceedure works for all APC models that calulate runtime, not
just the SmartUPS. It’s important that you load the UPS to 30% of the UPS
capacity, as reported by apcupsd or another UPS monitor program. I’ve found
that normal house lamps of different wattages allow me to adjust the load
to almost exactly what I want, which is between 30% and 35% of the UPS
capacity. This is critical te getting an accurate reading (according to the APC
web documents). Always bring the UPS to 100% charge first, as indicated by
the front panel lamps, or your UPS monitoring software.

Set the UPS shutdown time to 2 minutes, all other settings to nominal, and
disconnect the serial port cable from the UPS before running the recalibration.
If you leave a monitoring program running through the serial port, it will turn
the UPS off early, and you don’t want to do that during a recalibration run.
When the run is complete, and the UPS turns off, you can reattach the serial
cable, and the normal loads, and recharge the batteries normally. If you think
you might have a power outage during the recharge time, allow the UPS to
recharge to 20% or so (indicated by the panel lamps) before trying to use the
computer system. This will allow the UPS to handle short dropouts while it
recharges. Of course, if you can leave the computer off during the recharge
time, the UPS will recharge much faster.

As an aside, when the batteries failed, my total runtime at 100% charge and
an idle state was 9 minutes, which is pretty bad. I replaced the batteries with
extended capacity cells, which add about 15% to the stock capacity. Now,
after two complete charge/ discharge cycles, 100% charge shows the available
runtime to be 42 minutes on the system when it’s idle, and 33 minutes when
the system is very busy. The differences are due to the load of the computer,
when the disks are busy, and the cpus are not in a halted state (my system
halts the cpus when they are idle, to save power and lower heat, as do other
OS like Linux), when compared to an idle state. Apcupsd indicates the load is
about 27% when idle, and as much as 37% when heavily loaded.

I’ve found that two charge/discharge cycles result in a more accurate recali-
bration when installing new cells. It appears that some batteries need to be
put through a couple of complete cycles before they reach their full capacity.
I’ve also noticed that the full-charge voltage is different for each battery until
they have been through two cycles. On the initial charge of my new batteries,
the 100% charge voltage on the two cells was almost .5 VDC apart. After two
complete cycles, the batteries measure within .01 VDC of each other!

I hope this information helps anyone who might encounter the problem I saw,
and also shows folks how to recal their batteries. If you haven’t done a complete
recalibration in a year or two, I’d recommend it, so that you have warning of a
low battery instead of what happened to me.

Regards,

–Carl

Chapter 8: Maintaining Your UPS 75

8.2 Where Carl Suggests You Get Batteries

Hi, Folks.
I’m just replacing the batteries in one of my SmartUPS models, and it occurs
to me that some of you may not know about the place I get them from. I have
no relationship with this company, other than as a customer, but I feel they
know what they are doing, their prices are fair, and they have some interesting
batteries available that you can’t obtain from APC.
These are the reasons I use them, and I thought this information might be
useful to the US list members. They will ship outside of the US. If you have
questions, you can contact them through the email address listed on their web
pages. They have always responded pretty quickly to my questions.
The company is called Battery Wholesale Distributors, and they are located
in Georgetown, Texas. If you have questions, you can reach them by phone at
(800) 365-8444, 9:00AM to 5:00PM (their local time), Monday through Friday.
I’ve gotten email from them on the weekends, although the office is not open
then.
I won’t post prices, as you can get current pricing from their web site. They
have an entire section dedicated to APC replacement batteries, and it’s easy to
find what you need. You can order over the web, or by phone. They accept all
the usual credit cards.
The web site (as you might guess) is: www.batterywholesale.com
The thing I really like is that they have found manufacturers who make bat-
teries in the standard case sizes, but have additional capacity over the original
batteries shipped with the APC UPS models. Often, the difference is as much
as 15% or so, and this can result in additional runtime. It’s a nice upgrade for
a minor increase in price.
They are also ’green-aware’, in that they encourage you to recycle your old
batteries, and will accept the old batteries back from you if you cannot find a
local place that recycles them. You pay the shipping, but I think other than
that, there is no charge. I’ve never done this, as I have a battery retailer just
down the street who will accept my old batteries.
Anyway, if you didn’t know about these folks, put the info aside where you can
find it when you need replacement batteries. I won’t make any guarantees, but
I’ve been very pleased with their products, service, and pricing. I hope you find
them as helpful to you as I do. I’ve been dealing with them since about 1994,
and have never been disappointed. The owner of the place also is very good
on technical issues, so if you have questions on their products, he can get as
technical as you need to go.

Regards,
--Carl

Here is a link to the APC Battery Store.

http://www.batterywholesale.com
http://www.batterywholesale.com/battery-store/APC-batteries/?PHPSESSID=10ba07023457efda6a3520af1957755f

Chapter 9: Frequently-Asked Questions 76

9 Frequently-Asked Questions

See the bugs section of this document for a list of known bugs and solutions.

Q: Why all the craziness with custom serial cables?

A: It was nothing more nor less than a form of customer control. For a long time
APC wanted to keep other people from talking to its UPSes so it could lock out
potential competition for its PowerChute software. Scrambling the leads on its
serial cables was a cheap way to accomplish this — in fact, they tended to be
wired so that if you tried a straight-through cable, opening a serial link to the
UPS would be interpreted as a shutdown command!
(Hardware companies often think like this — they lock up interfaces by instinct,
cornering a small market rather than growing a bigger one. It’s fundamentally
stupid and self-defeating, but it’s the kind of stupid that tends to sound good
at an executive meeting.)
Fortunately, APC has lost a lot of this attitude since about 2000; nowadays
they even release technical information to the apcupsd maintainers.

Q: What UPS brands does apcupsd support?

A: Currently apcupsd supports only APC UPSes. However, some companies such
as Hewlett Packard put their own brand name on APC manufactured UPSes.
Thus even if you do not have an APC branded UPS, it may work with apcupsd.
You will need to know the corresponding APC model number. apcupsd supports
all the popular APC models. See the installation and configurations sections of
this document for more details.

Q: Does apcupsd support Windows?

A: With release 3.8.0, apcupsd now runs on Win95/98, WinMe, WinNT, and
Win2000 machines. All features of the Unix versions of apcupsd are imple-
mented. The UPS EEPROM programming features of apcupsd have not been
tested under Windows. Version 3.8.0 does not support simple signaling UPSes
(BackUPS, etc). Version 3.8.1 does support most simple signaling UPSes, but
not all cables (due to deficiencies in the Windows serial port API). Please note
that we have had reports that apcupsd does not work properly on the WinXP
system. If you have any information on this, please email us.

Q: I don’t have a cable, which one should I build?

A: First you must know if you have an apcsmart UPS or a voltage-signalling
UPS. See the table of supported UPSes (see [type table], page 8). If you have
a apcsmart UPS, we recommend building a Custom Smart (see Section 21.1
[Smart-Custom Cable for SmartUPSes], page 117) cable. If you have a voltage-
signaling UPS, we recommend that you build a Custom Simple (see Section 21.3
[Voltage-Signalling Cable for "dumb" UPSes], page 119) cable.

Q: How much CPU resources does apcupsd use?

A: Depending on your CPU speed, you may see more or less of the CPU consumed
by apcupsd. On a 400MHz Unix system, the CPU usage should fall well below

Chapter 9: Frequently-Asked Questions 77

0.1%. On slower systems, the percentage will increase proportionally to the
decrease in the CPU speed. On a 400Mhz Win98 machine, the CPU usage will
be on the order of 0.5-1.0%. This is higher than for Unix systems. However,
compared to the 30% CPU usage by APC’s PowerChute (the version on the
CDROM shipped with my UPS), apcupsd’s 0.5-1.0% is very modest.
If you configure apcupsd to run with pthreads (--with-pthreads on the
./configure line), apcupsd will run considerably faster, otherwise said, it
will consume less of your CPU, and it will use approximately one third of the
memory. For example, Carl Erhorn reports that on his Solaris system, "With
the old 3-process version, we averaged about 4.8MB of total memory used.
With the new single process, we use only about 1.7MB! That’s also a very
good improvement."

Q: What language is apcupsd written in?

A: It is written entirely in C.

Q: We are using apcupsd-3.8.1-1 in RedHat 6.2. The slave, when shutting down,
is reporting an error at line 436 of apcupsd.c. The error is initiated by apcupsd
--killpower! What can we do to fix this, and is it critical?

A: No, the error is not serious. Unfortunately, the documentation in the area of
master/slaves is not very detailed, and for that reason, your slave setup is not
totally correct as explained below.
On master machines, we modify ‘/etc/rc.d/init.d/halt’ to re-invoke
apcupsd with the --killpower option (actually the script apccontrol is
called). This causes the UPS to send the codes to the UPS to make it power
off.
On slave machines, these modifications should not be made to the
‘/etc/rc.d/init.d/halt’ script since the slave has no connection to the UPS.
To eliminate the problem, on all your slave machines, either restore the original
halt file, or simply delete all the lines containing ***apcupsd***, which were
inserted by the apcupsd installation process.

Q: To test apcupsd, I unplugged the UPS to simulate a power outage. After
the machine went into the shutdown process I plugged the UPS back into the
commercial power source. This caused the shutdown process to hang after the
daemon tried to shut-off the ups. Have you run into this problem, and if so do
you have a remedy?

A: Normally, once the shutdown process has begun, we cannot stop it, though
there is some code that tries to do so, we don’t consider it a very good idea —
how do you stop a shutdown that has killed off half of the daemons running on
your system? Most likely you will be left with an unusable system. In addition,
when apcupsd is re-executed in the halt script after the disks are synced, it
tries to shut off the UPS power, but the UPS will generally refuse to do so if
the AC power is on. Since we cannot be 100% sure whether or not the UPS
will shut off the power, we don’t attempt to reboot the system if we detect that
the power is back as it might then get caught by a delayed power off (at least
for Smart UPSes).

Chapter 9: Frequently-Asked Questions 78

Q: After running apcupsd for a while, I get the following error: "Serial communi-
cations with UPS lost." What is the problem?

A: We use standard Unix serial port read() and write() calls so once a connection
is made, we generally have few problems. However, there have been reports
that APC’s SNMP Management Card can cause serial port problems. If you
have such a card, we suggest that you remove it and see if the problem goes
away. It is also possible that some other process such as a getty is reading the
serial port.

Q: When apcupsd starts, I get the following error: "attach shmarea: cannot get
shm area: Identifier removed." What is the problem?

A: This problem and the problem of cannot create shm area are due to the fact
that the shared memory key that apcupsd wants to use is already in use. This
happens most frequently when there is an old zombie apcupsd process still in
the system. The solution is to remove the old process. You can often see
what is going on by doing a: ipcs command as root when apcupsd is not
running. If you see a segment with the key 0x10feed01, you can be sure there
is some old apcupsd process still using it. If you cannot kill the old process,
you can try using ipcrm (see the man pages). Recent versions of apcupsd
starting with apcupsd-3.8.2Beta6 should no longer have this problem as they
will automatically try using a different key.

Q: I get the following error: "Starting apcupsd power management. Mar 20
21:19:40 box apcupsd[297]: apcupsd FATAL ERROR in apcserial.c at line 83.
Cannot open UPS tty /dev/cua01: No such file or directory." What is the
problem?

A: The two most likely causes of your problem are: 1. You have the wrong serial
port device name in the apcupsd.conf file. 2. The device name is not defined
on your system. Suggestions for proceeding:For the first item, check what your
serial port device should be named. You might be able to find the name with
an:

ls /dev

Normally there will be hundreds or even thousands of names that print. If
that doesn’t produce anything useful, you can try step 2. Perhaps your device
is not defined. To get more information on your devices try man MAKEDEV or
find / -name MAKEDEV. It is often located in /dev/MAKEDEV. Looking at the
documentation may tell you what the correct name is, or at least allow you to
create the device.

Q: How do I ensure that the slaves shutdown before the master?

A: There are several strategies for getting the slaves properly shutdown before
shutting down the master. The first is to make the master wait a period of
time for the slaves to shutdown before doing its own shutdown. Currently, the
master always waits 30 seconds before starting its own shutdown. If this is
insufficient, you can add additional time by putting an appropriate sleep shell

Chapter 9: Frequently-Asked Questions 79

command in the ‘/etc/apcupsd/apccontrol’ file just before the actual system
shutdown command is executed (there are something like 3 places). The second
strategy is to put a TIMEOUT value in the apcupsd.conf file on the slave that
is sufficiently short that you are sure that the slave will shutdown before the
master. If the shutdown is done with a poweroff, this will also save power so
that the master can stay up longer.

Q: How do I ensure that my database server is correctly shutdown?

A: You simply add whatever commands are necessary in the appropriate case
statements in ‘/etc/apcupsd/apccontrol’, which is a standard script file that
is called to actually do the shutdown. Alternatively, you can add your own script
file that will be called before doing the commands in apccontrol. Your script
file must have the same name as the appropriate case statement in apccontrol;
it must be executable; and it must be in the same directory as apccontrol.

Q: I have Win2k Advanced server, and when starting the service, get: Could not
start the Apcupsd Server service on Local Computer. Error 1067: The process
terminated unexpectedly

A: The most common error causing your problem is an incorrect serial port speci-
fication on your DEVICE directive. It should be:

DEVICE /dev/com2

On WinNT machines, and probably Win2000 machines you MUST use
‘/dev/com2’ unless you modify the behavior of the boot process to prevent
Windows from probing the port. This is documented in our manual for
WinNT. Although I imagine it is the same for Win2000, I am not sure.

The second most common problem is bad placement of the files i.e. you did
not install them in c:\apcupsd Unfortunately for the current release, this path
is "hard coded" into the binaries.

The third most common problem is that you did not run the ‘setup.bat’ script
after loading the files. This is necessary to install apcupsd as a service.

If all the above fails, try starting apcupsd by hand inside a CYGWIN rxvt
window if you use an rxvt window rather than a DOS window, you will see
many more of the error messages.

In addition, most of the apcupsd startup errors are reported in:
‘c:\apcupsd\etc\apcupsd\apcupsd.events’

Many error messages associated with Windows services will be reported in the
Windows System Log.

Q: When using USB, I get the following log messages: usb-uhci.c: interrupt, status
3, frame# 826. What does it mean?

A: It means one transfer worked (bit 0 in status) and another one (after that)
failed (bit 1) at time frame 826. This kind of soft error is common on USB and
if everything seems to be working, you can ignore it.

Chapter 9: Frequently-Asked Questions 80

Q: apcnisd doesn’t work. It always gives: FATAL ERROR in apcipc.c at line 497.
attach shmarea: shared memory version mismatch (or UPS not yet ready to
report)

A: Unfortunately apcnisd does not work with pthreads enabled. You have the
following options:
1. If you build with pthreads enabled, apcnisd will not work no matter what

you do.
2. If you build with pthreads enabled, and you want to have network infor-

mation from apcupsd, you must set NETSERVER ON. This is the config-
uration we recommend (i.e. using pthreads and NETSERVER ON).

3. If you build with pthreads disabled, you have the choice of using apcnisd
or the NETSERVER code. If you wish to use apcnisd, you must set NET-
SERVER OFF

4. If you build with pthreads disabled, and you do not use apcnisd, you
must set NETSERVER ON if you wish to have network information from
apcupsd.

Concerning the names one sees with "ps".
1. With pthreads enabled, on Linux machines, you will see multiple copies of

apcupsd running, but they will all be called apcupsd rather than apcmain,
apcser, ... They will still run as LWP, but we are unable to set the names
on threads (LWP). Note, though ps shows "multiple copies" of apcupsd
running, it is really one memory image but with multiple threads.

2. With pthreads disabled, we are able to set the child process names (at least
on Linux) so you will see apcmain, apcser, apcnis, ... in the ps output. In
this case, they are really different processes each with its own memory
image (the code image is most likely shared).

Chapter 10: Apcupsd Bugs 81

10 Apcupsd Bugs

Unfortunately, it seems that every program has some bugs. We do our best to keep
the bugs to a minimum by extensive testing. However, because of our inherent nature to
occasionally overlook things and the fact that we don’t have all the UPS models nor the
APC documentation on those models, apcupsd will have some bugs.

As the bugs become known to us, we will post them on the bug tracking system at
SourceForge.

Advanced topics

Chapter 11: Customizing Event Handling 82

11 Customizing Event Handling

When apcupsd detects anomalies from your UPS device, it will make some decisions
that usually result in one or more calls to the script located in ‘/etc/apcupsd/apccontrol’.
The apccontrol file is a shell script that acts on the first argument that apcupsd passes to
it. These actions are set up by default to sane behavior for all psituations apcupsd is likely
to detect from the UPS. However, you can change the apccontrol behavior for every single
action.

To customize, so create a file with the same name as the action, which is passed as a
command line argument. Put your script in the ‘/etc/apcupsd’ directory.

These events are sent to the system log, optionally sent to the temporary
events file (‘/etc/apcupsd/apcupsd.events’), and they also generate a call to
‘/etc/apcupsd/apccontrol’ which in turn will call any scripts you have placed in the
‘/etc/apcupsd’ directory.

Normally, ‘/etc/apcupsd/acpcontrol’ is called only by apcupsd. Consequently, you
should not invoke it directly. However, it is important to understand how it functions,
and in some cases, you may want to change the messages that it prints using wall. We
recommend that you do so by writing your own script to be invoked by apccontrol rather
than by modifying apccontrol directly. This makes it easier for you to upgrade to the next
version of apcupsd

In other case, you may want to write your own shell scripts that will be invoked by
apccontrol. For example, when a power fail occurs, you may want to send an email message
to root. At present the arguments that apccontrol recognizes are:

When apcupsd detects an event, it calls the apccontrol script with four arguments as:
apccontrol <event> <ups-name> <connected> <powered>
where:

event is the event that occurred and it may be any one of the values described in the
next section.

ups-name is the name of the UPS as specified in the configuration file (not the name in
the EEPROM). For version 3.8.2, this is always set to Default

connected is 1 if apcupsd is connected to the UPS via a serial port (or a USB port). In
most configurations, this will be the case. In the case of a Slave machine where
apcupsd is not directly connected to the UPS, this value will be 0.

powered is 1 if the computer on which apcupsd is running is powered by the UPS and 0
if not. At the moment, this value is unimplemented and always 0.

11.1 apccontrol Command Line Options

apccontrol accepts the following command line options:

annoyme When a shutdown is scheduled, and the time specified on the ANNOYME
directive in the apcupsd.conf file expires, this event is generated.
Default – does a printf "Power problems please logoff." | wall then exits.

Chapter 11: Customizing Event Handling 83

changeme When apcupsd detects that the mains are on, but the battery is not functioning
correctly, this event is generated. It is repeated every x hours.
Default – does a printf "Emergency! UPS batteries have failed\nChange
them NOW" | wall then exits.

commfailure
This event is generated each time the communications line with the computer
is severed. This event is not detected on dumb signaling UPSes.
Default -does a printf "Warning serial port communications with UPS
lost." | wall then exits.

commok After a commfailure event is issued, when the communications to the computer
is re-established, this event will be generated.
Default – does a printf "Serial communications with UPS restored." |
wall then exits.

doreboot This event is depreciated and should not be used.
Default - does a reboot of the system by calling shutdown -h now

doshutdown
When the UPS is running on batteries and one of the limits expires (time, run,
load), this event is generated to cause the machine to shutdown.
Default does a shutdown of the system by calling shutdown -h now

emergency Does an emergency shutdown of the system by calling shutdown -h now

failing This event is generated when the UPS is running on batteries and the battery
power is exhausted. The event following this one will be a shutdown.
Default – does a printf "UPS battery power exhausted. Doing
shutdown.\n" | wall then exits.

loadlimit This event is generated when the battery charge is below the low limit specified
in the apcupsd.conf file.
Default – does a printf "UPS battery discharge limit reached. Doing
shutdown.\n" | wall then exits. After completing this event, apcupsd will
immediately initiate a doshutdown event.

mainsback This event is generated when the mains power returns after a powerout condi-
tion. The shutdown event may or may not have been generated depending on
the paramaters you have defined and the length of the power outage. A cancel
of a shutdown should never be attempted as it is very unlikely to succeed and
will almost surely leave your machine in a indeterminate state.
Default – attempts to cancel the shutdown with a shutdown -c (not sure about
that!!!!)

onbattery This event is generated 5 or 6 seconds after an initial powerfailure is detected.
It means that apcupsd definitely considers the UPS to be on batteries. The
onset of this event can be delayed by the ONBATTERYDELAY apcupsd.conf
configuration directive.
Default – does a printf "Power failure. Running on UPS batteries." |
wall then exits.

Chapter 11: Customizing Event Handling 84

offbattery This event is generated when the mains return only if the onbattery event has
been generated.

Default – does nothing.

powerout This event is generated immediately when apcupsd detects that the UPS has
switched to batteries. It may be due to a short powerfailure, an automatic
selftest of the UPS, or a longer powerfailure. In many cases, you may want to
inhibit the normal message sent/emailed by this event to avoid being annoyed
by short power failures.

Default – does a printf "Warning power loss detected." | wall then exits.

remotedown
This event is generated on a slave machine when it detects either that the master
has shutdown, or that a onbattery situation exists and the communications line
has been severed. Despite the name, you should never reboot the machine –
instead always shut it down.

Does a shutdown -h now

restartme This event is depreciated and should not be used.

Terminates the currently running apcupsd and then restarts it.

runlimit This event is generated when the MINUTES value defined in the apcupsd.conf
file expires while in a power fail condition. The MINUTES is the remaining
runtime as internally calculated by the UPS and monitored by apcuspd.

Does a printf "UPS battery runtime percent reached. Doing
shutdown.\n" | wall then exits. After completing this event, apcupsd will
immediately initiate a doshutdown event.

timeout This event is generated when the TIMOUT value defined in the apcupsd.conf
file expires while in a power fail condition. It indicates that the total time in a
power failure has been exeeded and the machine should be shutdown. Normally,
with smart UPSes, this value is not used, but rather one relies on the remaining
runtime (MINUTES) or the battery level (BATTERYLEVEL) values specified
in the conf file.

Does a printf "UPS battery runtime limit exceeded. Doing shutdown.\n"
| wall then exits. After completing this event, apcupsd will immediately initi-
ate a doshutdown event.

startselftest
This event is generated when apcupsd detects a self test by the UPS. Nor-
mally due to the 6 second onbattery delay default time, self test events are not
detected.

This is called when apcupsd detects that the UPS is doing a self test. No action
is taken.

endselftest This event is generated when the end of a self test is detected.

This is called when apcupsd determines that a self test has been completed. No
action is taken.

Chapter 11: Customizing Event Handling 85

mastertimeout
This event is generated when a slave detects that a master has not contacted it
in a reasonable time, or when a slave polls a master and gets no response in 30
seconds. This event applies only to the old master/slave networking code and
not to the NIS server/slave mode.
No action is taken.

masterconnect
This event is generated when the slave and the master reconnect. This event
applies only to the old master/slave networking code and not to the NIS
server/slave mode.
No action is taken.

To write your own routine for the powerout action, you create shell script named
powerout and put it in the lib directory (normally ‘/etc/apcupsd’). When the powerout
action is invoked by apcupsd, apccontrol will first give control to your script. If you want
apccontrol to continue with the default action, simply exit your script with an exit status of
zero. If you do not want apccontrol to continue with the default action, your script should
exit with the special exit code of 99. However, in this case, please be aware that you must
ensure proper shutdown of your machine if necessary.

Some sample scripts (onbattery and mainsback) that email power failure messages can
be found in the ‘examples’ directory of the source code.

Chapter 12: Master/Slave Configurations 86

12 Master/Slave Configurations

If you have two or more computers that are powered by the same UPS and they are
connected by a network, you can configure apcupsd so that the computer that controls the
UPS (connected by the serial port or USB port), which is called the master, can provide
information to other machines powered by the UPS, called slaves. When the master detects
a power failure, it will notify all the slaves (maximum of twenty). If the master detects that
the battery is low, it will also notify the slave so that the slave may perform a shutdown.

In addition, in cases where you wish to keep the master up longer than the slave,
you can configure the slave to shut down in a predetermined time after the UPS goes on
batteries.

If a picture is worth a thousand words for you, please see [Configuration types.], page 10.

12.1 Configuration Directives

If you are setting up a master/slave configuration, you will be required to make some
modifications to the ‘apcupsd.conf’ files after the build is done.

The minimum set of configuration directive changes needed to create a proper master
and slave configuration files is described in the Chapter 4 [Configuration Examples], page 38
section of this manual.

The details of these directives are explained in the Section 26.5 [Configuration Direc-
tives for Sharing a UPS], page 149 section of the Configuration chapter of this document.

In addition, sample master and slave configuration files can be found in the
‘<src>/examples’ directory (‘apcupsd.master.conf’ and ‘apcupsd.slave.conf’).

12.2 Master/Slave Problems

12.2.1 Master/Slave Shutdown

For additional details of shutting down a master/slave configuration, please see the
Master/Slave Shutdown section of the Shutdown chapter (see Section 28.1 [Shutdown Se-
quence <1>], page 160) of the Technical Reference.

12.2.2 Server/Slave Networking using NIS and the NET Driver

It is also possible to implement a network of NIS server/slave apcupsds using the new
3.10.x code and the net driver. This mode of NIS server/slave networking is considerably
different from the old method described at the beginning of this chapter. In the old code,
there is a lot of configuration on both the master and slave side, and the master polls or
sends info to the slave. Using the net driver is much simpler. However, you should carefully
check that the NIS slave does a proper shutdown. In the master/slave code, the master
ensures the best it can that the slave is shutdown or notified before it shuts down itself. On
the other hand, using the net driver, the NIS server knows nothing about the NIS slaves

Chapter 12: Master/Slave Configurations 87

that may be listening and thus takes no special precautions to ensure that the NIS slaves
receive the shutdown signal. Since the NIS slave reads the master’s data once per second
there should be no shutdown problems, and our experience confirms this. This question
can only be answered by carefully testing the shutdown.

In this NIS server/slave mode, the NIS server is a standard stand alone configuration
except that it must have NETSERVER on in the configuration file and have an NISPORT
nnn defined. Thus any apcupsd running in this mode then becomes the NIS server.

The NIS slave then uses the net driver to connect to the server’s NIS output. In this
mode, the NIS slave decides how often to poll the server for the NIS information. The NIS
slave’s conf file has UPSTYPE net, which will invoke the "network" driver. By setting
this machine’s DEVICE to be server-ip:server-NIS-port it will automatically connect to
the NIS server and use the server’s signals to shutdown the computer. In the example net
slave configuration file below, the slave uses the NIS information provided by the computer
tibs on port 3551.

apcupsd.conf v1.1
UPSCABLE ether
UPSTYPE net
Specify the server name:port where NIS is running
DEVICE tibs:3551
LOCKFILE /var/lock
BATTERYLEVEL 5
MINUTES 3
TIMEOUT 0
ANNOY 300
ANNOYDELAY 60
NOLOGON disable
EVENTSFILE /etc/apcupsd/apcupsd.events
UPSCLASS standalone
UPSMODE disable
#
Use this to control the poll time.
the default is 60 or 1 minute
#
NETTIME 30

12.3 Network Problems with Master/Slave or Server/Slave
Configurations

When working with a master/slave or server/slave configurations (one UPS powering
more than one computer), the master/server and slave communicate via the network. In
many configurations, apcupsd is started before the network is initialized. In this case, it
is possible that the master will be unable to contact the slave. On apcupsd versions prior
to 3.8.0, this could cause apcupsd to error off. The solution to this problem is to either
force apcupsd to be started after the network and the DNS (fiddle the symbolic links in
/etc/rc.d), or put the names of the slave machines in your ‘/etc/hosts’ file, or even more

Chapter 12: Master/Slave Configurations 88

preferable, use IP addresses rather than machine names. On some configurations, you may
need to use fully qualified names (host.domain.xxx) rather than simple host names.

12.3.1 Error Messages from a Master Configuration

In a master/slave configuration, you can get the following error messages from a master.
The error message is followed by a possible explanation:

12.3.1.1 Cannot resolve slave name XXX

To contact the slave, the slave name given in the configuration file must be resolved to
an IP address. In this case, apcupsd could not get the IP address. Either the slave name
is incorrect, your DNS may not be working, or you have started apcupsd during the boot
process before the network is operational.

12.3.1.2 Got slave shutdown from SSS

This message should not be printed as it is not yet used.

12.3.1.3 Cannot write to slave SSS

This message occurs when the master attempts to send a message to the slave SSS and
gets an error. It indicates that either the slave machine is not responding (apcupsd died,
the system crashed, ...) or that the network is down.

12.3.1.4 Cannot read magic from slave SSS

This message indicates that the master attempted to read the code key from the slave
SSS and it did not match the value expected. A common cause of this problem is that the
master and slave versions of apcupsd are not the same. Please be sure you are running the
same version of apcupsd on all your master and slave machines.

12.3.1.5 Connect to slave SSS failed

This message is logged when the master attempts to connect to slave SSS and no
connection is accepted. The most common cause of this problem is that the slave copy
of apcuspd is not yet ready to accept connections or is not running. Generally, apcupsd
will retry the connection a bit later. If the problem is persistent, it can indicate a network
problem or the slave name on the SLAVE directive of the master’s configuration file is
incorrect.

12.3.1.6 Cannot open stream socket

This indicates a fundamental networking problem on your system — either a lack of
sufficient resources or you have not configured TCP/IP operations.

Chapter 12: Master/Slave Configurations 89

12.3.2 Error Messages from a Slave Configuration

In a master/slave configuration, you can get the following error messages from a slave.
The error message is followed by a possible explanation:

12.3.2.1 Cannot resolve master name MMM

This message is logged when the slave attempts to resolve the name given on the
MASTER configuration directive to an IP address. It probably means that the master
name MMM is not defined, your DNS is not properly working, or you have started apcupsd
in the boot process before the network is initialized. Check the name MMM, or use an
explicit IP address on the MASTER configuration directive in the slave’s configuration file.

12.3.2.2 Cannot bind local address, probably already in use

This means that the slave has attempted to bind the port number so that it can listen
for messages from the master. This can occur if already have a copy of apcupsd running,
or you have previously run apcupsd in the past 5 or 10 minutes, because occasionally the
operating system will not shutdown a port correctly for 5 to 10 minutes after a program
exits. In this case, you can either wait a few minutes for the problem to go away, or use a
different port in both your master and slave configuration files.

12.3.2.3 Socket accept error

The slave got an error waiting on the accept() system call. This is probably due to a
fundamental networking problem.

12.3.2.4 Unauthorized attempt from master MMM

The master named MMM (probably an IP address) contacted the slave but MMM is not
the master that was listed on the MASTER configuration directive in /etc/apcupsd.conf,
and consequently, it is not authorized to communicate with the slave. Please check that
your MASTER and SLAVE names in your slave and master configuration files respectively
are correct.

12.3.2.5 Read failure from socket

The slave got an error reading the socket open to the master. This indicates a funda-
mental networking problem.

12.3.2.6 Bad APC magic from master: MMM

The slave received a code key from the master that does not correspond to the one
expected by the slave. The most common cause of this problem is that you are running a
different version of apcupsd on the master and the slave. Please ensure that you are running
the same version of apcupsd on all your master and slaves.

Chapter 12: Master/Slave Configurations 90

12.3.2.7 Bad user magic from master: MMM

This message indicates that the master and slave have previously communicated, but
that the code key transmitted with the most recent message from the master does not
correspond to what the slave expects. This problem is probably due to a network error or
some other user or machine contacting the slave on the network port.

12.3.3 Master/Slave Connection Not Working

Master/slave problems are usually related to one of the following items:
1. Improper apcupsd.conf files. A good starting point are the master/slave example files

in the examples subdirectory of the source.
2. Master or slave IP address or name incorrect. Try ping’ing each machine from the

other using the names or addresses that you have put in the respective apcupsd.conf
files.

3. Make sure no other program is using socket number 6666 or change the NETPORT
directive in both apcupsd.conf files.

4. Make sure you are using the same version of apcupsd on both the master and slave
machines.

Chapter 13: Controlling Multiple UPSes on one Machine 91

13 Controlling Multiple UPSes on one Machine

You may want to use your server to control multiple UPSes. This is possible by proper
configuration and by running one copy of apcupsd for each UPS to be controlled (recall the
[Configuration types.], page 10).

13.1 Configuration

The way to accomplish the above is to ensure that none of the critical files used by
each of the two copies of apcupsd are the same. By using suitable configuration options,
this is possible.

13.1.1 The First Copy of apcupsd

For example, assuming you have SmartUPSes in both cases, to configure and install the
first copy of apcupsd, which controls a UPS and Computer A, one could use the following
configuration:

./configure \
--prefix=/usr \
--sbindir=/sbin \
--with-cgi-bin=/home/http/cgi-bin \
--enable-cgi \
--with-css-dir=/home/http/css \
--with-log-dir=/etc/apcupsd \
--with-serial-dev=/dev/ttyS0 \
--enable-pthreads \
--with-nis-port=3551 \
--enable-powerflute

This is pretty much a "normal" installation using many of the defaults. Once built
and installed, this would control the first UPS and cause a shutdown of the system when
the batteries are low. This copy of apcupsd will be started and stopped automatically when
the system is booted and halted.

13.1.2 The Second Copy of apcupsd

To configure and install the second copy of apcupsd, which controls the second UPS
and Computer B, you could use the following configuration:

./configure \
--prefix=$HOME/apcupsd/bin \
--sbindir=$HOME/apcupsd/bin \
--enable-cgi \
--with-cgi-bin=$HOME/apcupsd/bin \
--with-log-dir=$HOME/apcupsd/bin \

Chapter 13: Controlling Multiple UPSes on one Machine 92

--with-pid-dir=$HOME/apcupsd/bin \
--sysconfdir=$HOME/apcupsd/bin \
--with-lock-dir=$HOME/apcupsd/bin \
--with-pwrfail-dir=$HOME/apcupsd/bin \
--with-serial-dev=/dev/ttyS1 \
--enable-pthreads \
--with-nis-port=7001 \
--disable-install-distdir

Note, in this case, we use considerably more configuration options to ensure that the
system files are placed in a different directory (‘$HOME/apcupsd/bin’). We have also selected
a different serial port and a different NIS (Network Information Server) port. And finally,
we have used the --disable-install-distdir option, which prevents make install from
doing the final system installation (i.e. the modification of the halt script) since this was
previously done.

13.1.3 Important Steps after Installation of the Second Copy

After the make install of the second copy of apcupsd there are a num-
ber important steps to complete. You must either remove or modify the file
‘$HOME/apcupsd/bin/apccontrol’, so that it will not shutdown Computer A when
the battery of UPS 2 is low. One suggestion is to copy ‘examples/safe.apccontrol’
into ‘$HOME/apcupsd/bin/apccontrol’. Alternatively, you could edit the
‘$HOME/apcupsd/bin/apccontrol’ and delete all statements that attempt to
shutdown the machine. Another important step is to find a way to shutdown Computer
B when UPS 2’s battery is low. Probably the simplest way to do this is to edit
‘$HOME/apcupsd/bin/apcupsd.conf’ on Computer A so that this second copy of apcupsd
becomes a network master. Then install a standard slave configuration on Computer
B. Please remember that if UPS 1’s batteries are exhausted before UPS 2’s batteries,
Computer B may not be properly shutdown. And at the current time, there is no simple
means to make the two copies of apcupsd running on Computer A communicate. Thus
there are certain risks in such a configuration. However, these configurations can be very
useful for powering electronic equipment and such.

If Computer B is vitally important, it would probably be better to purchase a serial
port card for it, or perhaps use a USB UPS. To ensure that it is properly shutdown if
Computer A goes down, you could run a second copy of apcupsd on Computer B as a
slave connected to the main copy of apcupsd on Computer A. Thus Computer B would be
running two slaves, one driven by the master controlling UPS 1 and the other by the master
controlling UPS 2, and Computer B could be shutdown by the first master that signaled it
to do so.

Chapter 14: Support for SNMP UPSes 93

14 Support for SNMP UPSes

snmp To run apcupsd with an SNMP UPS, you need the following things:

An SNMP UPS, for example a Web/SNMP card installed into the SmartSlot.

apcupsd version 3.10.0 or higher

Net-SNMP library (previously known as ucd-snmp) installed

14.1 Connecting an SNMP UPS

The Simple Network Management Protocol provides an interface to connect to remote
devices through the network. apcupsd is now capable of using the SNMP interface of an
SNMP-enabled UPS to communicate with an UPS. Currently apcupsd supports only APC’s
PowerNet MIB. To enable the SNMP support it is enough to configure the correct device
in your apcupsd.conf configuration file. The directive needed for this configuration is:

DEVICE 192.168.100.2:161:APC:private

where the directive is made by four parts:

IP address of the remote UPS

Remote SNMP port

Kind of remote SNMP agent, currently can only be "APC" for APC’s powernet MIB

The read-write community string, usually it is "private" for read-write access.

14.2 Building and Installing apcupsd

Follow the instructions in Chapter 2 [Building and Installing apcupsd], page 20l, being
sure to include the following options (in addition to any others you need) on the ./configure
line:

./configure \
--with-serial-dev=<your-SNMP-device> \
--with-upstype=snmp \
--with-upscable=smart \
--enable-pthreads \
--enable-snmp

14.3 SNMP Specific Information

The SNMP connection gives less information compared to a serial smart cable. This is
not a problem as the most useful information is given, together with a number of secondary
parameters that are informative enough to run safely your UPS.

snmp
http://www.net-snmp.org/

Chapter 14: Support for SNMP UPSes 94

14.4 Known Problems

Currently (as of 3.10.0) the code to power off the UPS needs special configuration. The
killpower command for SNMP UPSes can not be issued during shutdown as typically at some
time during shutdown operations the network stack is stopped. To overcome this problem it
is needed to modify the ‘/etc/rc.d/apcupsd’ system control script to tell apcupsd to issue
the power down command (killpower) to the UPS immediately before apcupsd initiates the
system shutdown. For this reason it is paramount to set your UPS grace time to a value
greater than 120 seconds to allow for clean shutdown operations before the UPS removes
the power from its plugs. To enable correct shutdown operation during powerdown do the
following:

Connect to your Web/SNMP card using your favorite web browser, go to the UPS
configuration menu and change the "Shutdown Delay" parameter to 180 seconds or
more, depending on how much time your system shutdown requires to umount all the
filesystems.
Change /etc/rc.d/apcupsd script adding the ’–kill-on-powerfail’ to the apcupsd invo-
cation.
Restart your apcupsd

With this setup your UPS operations should be safe.

Chapter 15: Alternate Ways To Run The Network Information Server 95

15 Alternate Ways To Run The Network
Information Server

apcupsd maintains STATUS and EVENTS data concerning the UPS and its operation.
This information can be obtained over the network using either apcnisd or apcupsd’s internal
network information server, which is essentially the same code as apcnisd but compiled into
apcupsd. Clients on the network make a connection to the information server and send
requests for status or events data, which the server then transmits to them.

The information served to the network by this interface should not be confused with
master/slave mode that shares a UPS between two or more computers. That code is de-
scribed in Section 26.5 [Configuration Directives for Sharing a UPS], page 149 of this doc-
umentation.

There are three different ways to run the information server depending on your require-
ments and preferences. It can be run as 1. a standalone program, 2. a standalone program
invoked by the inetd daemon, or 3. as a thread (or child process) of apcupsd (default
configuration). We recommend option 3 unless you have specific reasons to do otherwise.
Option 3 is what is configured in by default.

15.1 Running the server as a child of apcupsd

This is probably the simplest way to run the network information server. To do so,
you simply make sure the NETSERVER directive in ‘/etc/apcupsd/apcupsd.conf’ is on,
and then stop and restart apcupsd. It will automatically create the server thread (or spawn
an additional child process named apcnis) to handle network clients. In the case where
pthreads are enabled, a new thread will be created rather than a child process to handle
the network information requests. Note, the above modification should not be necessary if
you use the default ‘apcupsd.conf’, since it is already turned on.

Although this method is simple, it affords no protection from the outside world access-
ing your network server unless you are behind a firewall. In addition, if there is a bug in the
network server code, or if a malicious user sends bad data, it may be possible for apcnis to
die, in which case, though it is not supposed to, apcupsd may also exit, thus leaving your
machine without shutdown protection. In addition, since apcupsd is running at root level,
all threads or any child process will do so also. That being said, most of us prefer to run
the server this way.

With apcupsd version 3.8.2 and later, you may enable the TCP Libwrap subroutines
to add additional security. In this case, access to the network server will be controlled by
the statements you put in ‘/etc/hosts.allow’.

15.2 Running apcnisd from INETD

This is probably the most secure and most desirable way of running the network in-
formation server. Unfortunately, it is a bit more complicated to set up. However, once
running, the server remains unexecuted until a connection is attempted, at which point,
inetd will invoke apcnisd. Once apcnisd has responded to the client’s requests, it will exit.
None of the disadvantages of running it standalone apply since apcnisd runs only when a
client is requesting data. Note, running in this manner works only if you are using the old

Chapter 15: Alternate Ways To Run The Network Information Server 96

forking code and have pthreads explicitly turned off. The pthreads version of apcupsd does
not support the shared memory calls that are necessary for apcnisd to access the internal
state of apcupsd.

An additional advantage of this method of running the network information server is
that you can call it with a TCP wrapper and thus use access control lists (ACL) such as
‘hosts.allow’. See the man pages for ‘hosts.allow’ for more details.

To configure apcnisd to run from INETD, you must first put an entry in
‘/etc/services’ as follows:

apcnisd 3551/tcp

This defines the port number (3551) and the service (TCP) that apcnisd will be using.
This statement can go anywhere in the services file. Normally, one adds local changes such
as these to the end of the file.

Next, you must modify ‘/etc/inetd.conf’ to have the following line:

apcnisd stream tcp nowait root /usr/sbin/tcpd /sbin/apcnisd -i

If you do not want to run the TCP wrapper, then the line should be entered as follows
(not tested):

apcnisd stream tcp nowait root /sbin/apcnisd -i

Please check that the file locations are correct for your system. Also, note that the -i
option is necessary so that apcnisd knows that it was called by INETD. Before restarting
INETD, first ensure that the NETSERVER directive in ‘/etc/apcupsd/apcupsd.conf’ is
set to off. This is necessary to prevent apcupsd from starting a child process that acts as a
server. If you change NETSERVER, you must stop and restart apcupsd for the configuration
change to be effective.

Finally, you must restart INETD for it to listen on port 3551. On a Red Hat system,
you can do so by:

/etc/rc.d/init.d/inet reload

At this point, when a client attempts to make a connection on port 3551, INETD will
automatically invoke apcnisd.

15.3 Running apcnisd Standalome

This is probably the least desirable of the three ways to run an apcupsd network
information server because if apcupsd is stopped, you must also stop apcnisd before you can
restart apcupsd. This is because apcnisd, when run standalone, holds the shared memory
buffer by which apcnisd and apcupsd communicate. This prevents a new execution of
apcupsd from creating it.

To execute apcnisd in standalone mode, first ensure that the NETSERVER directive in
/etc/apcupsd/apcupsd.conf is set to off. This is necessary to prevent apcupsd from starting
a child process that acts as a server. Restart apcupsd normally, then:

Chapter 15: Alternate Ways To Run The Network Information Server 97

/sbin/apcnisd

The advantage of running the network information server standalone is that if for some
reason, a client causes the network server to crash, it will not affect the operation of apcupsd.

Chapter 16: apcupsd System Logging 98

16 apcupsd System Logging

The apcupsd philosophy is that all logging should be done through the syslog facility
(see: man syslog). This is now implemented with the exceptions that STATUS logging,
for compatibility, with prior versions is still done to a file, and EVENTS logging can be
directed to a "temporary" file so that it can be reported by the network information server.

16.1 Logging Types

apcupsd splits its logging into four separate types called:

1. DEBUG

2. DATA

3. STATUS

4. EVENTS

Debug logging consists of debug messages. Normally these are turned on only by
developers, and currently there exist very few of these debug messages.

DATA Logging

Data logging consists of periodically logging important data concerning the operation
of the UPS. See the Data Logging (see Chapter 25 [DATA Logging], page 143) section of
this manual for more details.

STATUS Logging

Status logging consists of logging all available information known about your UPS as
a series of ASCII records. This information is also made available by the apcupsd network
information server.

For more details on STATUS logging, see the Status (see Chapter 27 [apcupsd Status
Logging], page 154) section of the Technical Reference.

EVENTS Logging

Events logging consists of logging events as they happen. For example, successful
startup, power fail, battery failure, system shutdown, ...

See the manual section on customizing event handling (see Chapter 11 [Customizing
Event Handling], page 82) for more details.

Chapter 16: apcupsd System Logging 99

16.2 Implementation Details

In order to ensure that the data logged to syslog() can be directed to different files, I
have assigned syslog() levels to each of our four types of data as follows:
1. 1. DEBUG logging has level LOG DEBUG
2. 2. DATA logging has level LOG INFO
3. 3. STATUS logging has level LOG NOTICE
4. 4. EVENTS logging has levels LOG WARNING, LOG ERR, LOG CRIT, and

LOG ALERT

It should be noted that more work needs to be done on the precise definitions of each
of the levels for EVENTS logging. Currently, it is roughly broken down as follows:

LOG WARNING general information such as startup, etc.
LOG ERR an error condition detected, e.g. communications problem with the UPS.
LOG CRIT a serious problem has occurred such as power failure, running on UPS

batteries, ...
LOG ALERT a condition that needs immediate attention such as pending system

shutdown, ...
The default Facility for syslog() logging is DAEMON, although this can be changed

with the FACILITY directive in apcupsd.conf. In the following example, we should the
facility as local0.

More work needs to be done to the code to ensure that it corresponds to the above
levels.

As a practical example of how to setup your syslog() to use the new logging feature,
suppose you wish to direct all DATA logging to a file named ‘/var/log/apcupsd.data’, all
EVENTS to the standard ‘/var/log/messages’ file (to be mixed with other system mes-
sages), and at the same time send all EVENTS to ‘/var/log/apcupsd.events’, and finally,
you want to send all STATUS logging to the named pipe ‘/var/log/apcupsd.status’

First as root, you create the named pipe:

mkfifo /var/log/apcupsd.status

Change its permissions as necessary or use the -m option to set them when creating
the pipe.

Then you modify your ‘/etc/syslog.conf’ file to direct the appropriate levels of mes-
sages where you want them. To accomplish the above, my syslog.conf file looks like:

exclude all apcupsd info by default
*.info;local0.none /var/log/messages

Everything for apcupsd goes here
local0.info;local0.!notice /var/log/apcupsd.data
local0.notice;local0.!warn |/var/log/apcupsd.status
local0.warn /var/log/apcupsd.events
local0.warn /var/log/messages

Chapter 16: apcupsd System Logging 100

16.3 Developers Notes

All logging functions and all error reporting are now done through the log event()
subroutine call. Exceptions to this are: initialization code where printf’s are done, and
writing to the status file. Once the initialization code has completed and the fork() to
become a daemon is done, no printf’s are used. log event() has exactly the same format as
syslog(). In fact, the subroutine consists of only a syslog() call. If anyone really wishes to
log to a file, the code to do so can easily be done by adding code to log event() in apclog.c.

Installation: Windows

Chapter 17: The Windows Version of apcupsd 101

17 The Windows Version of apcupsd

The Windows version of apcupsd has been tested on Win95, Win98, WinMe, WinNT,
WinXP, and Win2000 systems. This version of apcupsd has been built to run under the
CYGWIN environment, which provides many of the features of Unix on Windows systems.
It also permitted a rapid port with very few source code changes, which means that the
Windows version is for the most part running code that has long proved stable on Unix
systems. Even though the Win32 version of apcupsd is a port that relies on many Unix
features, it is just the same a true Windows program. When running, it is perfectly inte-
grated with Windows and displays its icon in the system icon tray, and provides a system
tray menu to obtain additional information on how apcupsd is running (status and events
dialogue boxes). If so desired, it can also be stopped by using the system tray menu, though
this should normally never be necessary.

Once installed apcupsd normally runs as a system service. This means that it is
immediately started by the operating system when the system is booted, and runs in the
background even if there is no user logged into the system.

17.1 Installation

Normally, you will install the Windows version of apcupsd from the binaries. This
install is somewhat Unix like since you do many parts of the installation by hand. To
install the binaries, you need WinZip.

Simply double click on the ‘winapcupsd-3.8.5.tar.gz’ icon. The actual name of the
icon will vary from one release version to another.

Chapter 17: The Windows Version of apcupsd 102

When Zip says that it has one file and asks if it should unpack it into a temporary file,
respond with Yes.

Ensure that you extract all files and that the extraction will go into ‘C:\’

If you wish to install the package elsewhere, please note that you will need to proceed
with a manual installation, which is not particularly easy as you must rebuild the source
and change the configuration file as well.

This installation assumes that you do not have CYGWIN installed on your computer.
If you do, and you use mount points, you may need to do a special manual installation.

Once you have unzipped the binaries, open a window pointing to the binary installation
folder (normally ‘c:\apcupsd’). This folder should contain folders with the name bin, etc,
examples, and manual. If and when you no longer need them, the examples and manual
sub-folders of the ‘c:\apcupsd’ directory may be removed.

Continuing the installation process:

Chapter 17: The Windows Version of apcupsd 103

Open the directory ‘c:\apcupsd\etc\apcupsd’ in the Windows Explorer by Clicking
on the apcupsd folder then on the ‘etc’ folder, then on the apcupsd folder. Finally
double click on the file ‘apcupsd.conf’ and edit it to contain the values appropriate
for your site. In most cases, no changes will be needed, but if you are not using COM1
for your serial port, you will need to set the DEVICE configuration directive to the
correct serial port. Note, if you are using WinNT or Win2000, the operating system
may probe the port attempting to attach a serial mouse. This will cause apcupsd to be
unable to communicate with the serial port. If this happens, or out of precaution, you
can edit the ‘c:\boot.ini’ file. Find the line that looks something like the following:

multi(0)disk(0)rdisk(0)partition(1)\WINNT="Windows NT Workstation Version
4.00"

and add the following to the end of the line: /NoSerialMice:COM1 (or COM2 depending
on what you want to use). The new line should look similar to:

multi(0)disk(0)rdisk(0)partition(1)\WINNT="Windows NT Workstation Version
4.00" /NoSerialMice:COM1

where the only thing you have changed is to append to the end of the line. This addition
will prevent the operating system from interferring with apcupsd

Then return to ‘c:\apcupsd’ and open on the ‘bin’ folder so that you see its contents.

To do the final step of installation, double click on the ‘setup.bat’ program. This
script will setup the appropriate mount points for the directories that apcupsd uses, it
will install apcupsd in the system registry, and on Windows 98, it will start apcupsd
running.

If everything went well, you will get something similar to the following output in a
DOS shell window:

Chapter 17: The Windows Version of apcupsd 104

What is important to verify in the DOS window is that the root directory ‘\’ is mounted
on device ‘c:\’.
The DOS window will be followed immediately by a Windows dialogue box as follows:

On Windows 98, to actually start the service, either reboot the machine, which is not
necessary, or open a DOS shell window, and type the following commands:

cd c:\apcupsd\bin
apcupsd /service

Alternatively, you can go to the ‘c:\apcupsd\bin’ folder with the Explorer and double
click on the Start icon.

Chapter 17: The Windows Version of apcupsd 105

On Windows NT, to start the service, either reboot the machine, which is not necessary,
or go to the Control Panel, open the Services folder and start the apcupsd daemon
program by selecting the apcupsd UPS Server and then clicking on the Start button
as shown below:

If the Services dialog reports a problem, it is normally because your DEVICE statement
does not contain the correct serial port name.

You probably should also click on the Startup... button to ensure that the correct
defaults are set. The dialogue box that appears should have Startup Type set to Automatic
and Logon should be set to System Account with Allow Service to Interact with Desktop
checked. If these values are not set correctly by default, please change them otherwise
apcupsd will not work.

For WinXP systems (and probably Win2K), the dialogs are a bit different from those
shown here for WinNT, but he concept is the same. You get to the Services dialog by
clicking on: Control Panel -> Administrative Tools -> Component Services. The apcupsd
service should appear in the right hand window when you click on Services (Local) in the
left hand menu window.

That should complete the installation process. When the system tray icon turns from

a battery into a plug , right click on it and a menu will appear. Select the Events
item, and the Events dialogue box should appear. There should be no error messages. By
right clicking again on the system tray plug and selecting the Status item, you can verify
that all the values for your UPS are correct.

Chapter 17: The Windows Version of apcupsd 106

When the UPS switches to the battery, the battery icon will reappear in the system
tray. While the UPS is online, if the battery is not at least 99% charged, the plug icon

will become a plug with a lightning bolt in the middle to indicate that the battery is
charging.

17.2 Installation Directory

The Win32 version of apcupsd must reside in the ‘c:\apcupsd\’ directory, and there
must be a ‘c:\tmp’ directory on your machine. The installation will do this automatically,
and we recommend that you do not attempt to place apcupsd in another directory. If you
do so, you are on your own, and you will need to do a rebuild of the source.

17.3 Testing

It would be hard to overemphasize the need to do a full testing of your installation of
apcupsd as there are a number of reasons why it may not behave properly in a real power
failure situation.

Please read Chapter 5 [Testing Apcupsd], page 43 of this document for
general instructions on testing the Win32 version. However, on Win32 systems,
there is no Unix system log file, so if something goes wrong, look in the file
‘c:\apcupsd\etc\apcupsd\apcupsd.events’ where apcupsd normally logs its events, and
you will generally find more detailed information on why the program is not working. The
most common cause of problems is either improper configuration of the cable type, or an
incorrect address for the serial port.

17.4 Upgrading

On Win98 and Win95 systems, to upgrade to a new release, simply stop apcupsd by
using the tray icon and selecting the Close apcupsd menu item, or by double clicking on the
Stop icon located in the ‘c:\apcupsd\bin’ directory, then apply the upgrade and restart
apcupsd.

On WinNT systems (and Win2000 systems), you may stop apcupsd as indicated abover
or alternatively you may stop apcupsd by using the Services item in the Control Panel. In
addition, at least on my system, there seems to be a WinNT bug that causes the system to
prevent apcupsd.exe from being overwritten even though the file is no longer being used.
This is manifested by an error message when attempting load a new version and overwrite
the old apcupsd.exe (the extract part of WinZip as described above). To circumvent this

Chapter 17: The Windows Version of apcupsd 107

problem (if it happens to you), after shutting down the running version of apcupsd, through
the Services dialogue in the Control Panel, first click on the Stop button:

Chapter 17: The Windows Version of apcupsd 108

then click on the Startup ... button, and in the Startup dialogue select the Disabled
button to disable apcupsd:

After closing the dialogues, reboot the system, typical of Microsoft :-(. When the
system comes back up, apcupsd will not be automatically launched as a service, and you
can install the new version. To reinstate apcupsd as an automatic service, using the Control
Panel: reset apcupsd to Automatic startup in the Startup dialogue, then restart apcupsd
in the Services dialogue as shown above in the installation instructions. Frequently after
an upgrade, you will click on the Start button and after a few seconds, the system reports
that it failed to start. The cause of this problem is unknown, but the solution is simply to
click again on the Start button.

17.5 Post Installation

After installing apcupsd and before running it, you should check the contents
of two files to ensure that it is configured properly for your system. The first is
‘c:\apcupsd\etc\apcupsd\apcupsd.conf’. You will probably need to change your
UPSCABLE directive, your UPSTYPE and possibly your DEVICE directives. Please refer
to the configuration section of this manual for more details.

Chapter 17: The Windows Version of apcupsd 109

The second file that you should examine is ‘c:\apcupsd\etc\apcupsd\apccontrol’.
This file is called by apcupsd when events (power loss, etc) are generated. It permits the
user to program handling the event. In particular, it permits the user to be notified of the
events. For the Win32 version, each event is programmed to display a Windows popup
dialogue box. If your machine is mostly unattended, you may want to comment out some of
these popup dialogue boxes by putting a pound sign (#) in column one of the appropriate
line.

17.6 Problem Areas

In addition to possible problems of reinstallation or upgrade on WinNT systems, as
noted above, we have discovered the following problem: On some Windows systems, the
domain resolution does not seem to work if you have not configured a DNS server in the
Network section of the Control Panel. This problem should be apparent only when running
a master or a slave configuration. In this case, when you specify the name of the master
or the slave machine(s) in your ‘apcupsd.conf’ file, apcupsd will be unable to resolve the
name to a valid IP address. To circumvent this problem, simply enter all machine addresses
as an IP address rather than a domain name, or alternatively, ensure that you have a valid
DNS server configured on your system (often not the case on Win32 systems). For example,
instead of using the directive "MASTER my.master.com" use something like "MASTER
192.168.1.54" where you replace the IP address with your actual IP address.

Also, on WinNT systems, the PIF files in ‘/apcupsd/bin’ used for starting and stopping
apcupsd do not work. Use the services control panel instead.

On Win95 systems, there are reports that the PIF files do not work. If you find that
to be the case, the simplest solution is to use the batch files that we have supplied in the
‘c:/apcupsd/bin’ directory. Also, on Win95 systems, we have an unconfirmed report that
indicates that apcupsd does not start automatically as a service even though the Registry
has been properly updated. If you experience this problem, a work around is to put a
shortcut to apcupsd in the StartUp folder.

As noted above, after an upgrade, you may need to start apcupsd several times before
it will actually run.

On WinNT, WinXP, and Win2K systems, you can examine the System Applications
log to which apcupsd writes Windows error messages during startup.

Regardless of which Windows system you are running, apcupsd logs most error mes-
sages to ‘c:\apcupsd\etc\apcupsd\apcupsd.events’. This type error messages such as
configuration file not found, etc are written to this file.

17.7 Utility Functions

The directory ‘c:\apcupsd\bin’ contains six utility routines (actually .pif files) that
you may find useful. They are:

Start
Stop

Chapter 17: The Windows Version of apcupsd 110

Install
Uninstall
ups-events
ups-status

Any of these utilities may be used on any system, with the exception of the Start utility,
which cannot be used on WinNT and Win2000 systems. On those systems, the apcupsd
service must always be started through the Services sub-dialogue of the Control Panel.

The Install and Uninstall utilities install and uninstall apcupsd from the system registry
only. All other pieces (files) of apcupsd remain intact. It is not absolutely necessary for
apcupsd to be installed in the registry as it can run as a regular program. However, if it is
not installed in the registry, it cannot be run as a service.

The functions of Stop, ups-events, and ups-status can be more easily invoked by right
clicking on the apcupsd icon in the system tray and selecting the desired function from the
popup menu.

17.8 Disclaimer

Some of the features such as EEPROM programming have not been exhaustively tested
on Win32 systems. If at all possible, we recommend not to use it as a network master on
Win95, Win98, and WinMe due to the instability of those operating systems.

Some items to note:
This version of apcupsd will not attempt to shut off the UPS power when the battery
is exhausted. Thus if the power returns before the UPS completely shuts down, your
computer may not reboot automatically. This is because we do not know how to regain
control after the disks have been synced in order to shut off the UPS power.
Nevertheless, it is possible to use the --kill-on-powerfail option on the apcupsd
command line, but the use of this option could cause the power to be cut off while
your machine is still running. See Section 28.1 [Shutdown Sequence], page 160 of
this document for a more complete discussion of this subject. If you are still inter-
ested in trying to get this to work, please look at the code that is commented out in
‘c:\apcupsd\etc\apcupsd\apccontrol’ under the doshutdown case.
An alternative to the --kill-on-powerfail option is to use the KILLDELAY (see
[KILLDELAY <time in seconds>], page 148) configuration directive.
This configuration directive is appropriate on Windows machines where apcupsd con-
tinues to run even when the machine is halted (as is the case on most NT machines).
When apcupsd detects important events, it calls ‘c:\apcupsd\etc\apcupsd\apccontrol’,
which is a Unix shell script. You may modify this script to suit your particular needs.
Currently, it puts a Windows dialogue on the screen with a brief explanation of the
event. If these dialogues annoy you, you can remove or comment out the calls to
popup from this file.

17.9 Email Notification of Events

On Win95/98 systems, it is possible to receive notification of apcupsd events that are
passed to apccontrol. This is possible using a simple email program that unfortunately is

Chapter 17: The Windows Version of apcupsd 111

not functioning 100% correctly. In addition, I (Kern) was not able to make this program
work on WinNT while apcupsd is running as a service under the system account (it works
fine with any user account).

If you wish to try this program on Win95/98 systems, look at the files named changeme,
commfailure, commok, onbattery, and mainsback in the directory ‘c:\apcupsd\examples’.
To use them, you must modify the SYSADMIN variable to have a valid email address, then
copy the files into the directory ‘c:\apcupsd\etc\apcupsd’.

17.10 Killpower under Windows

If your batteries become exhausted during a power failure and you want your machine
to automatically reboot when the power comes back, it is useful to implement the killpower
feature of the UPS where apcupsd sends the UPS the command to shut off the power. In
doing so, the power will be cut to your PC and if your BIOS is properly setup, the machine
will automatically reboot when the power comes back. This is important for servers.

This feature is implemented on Unix systems by first requesting a system shutdown.
As a part of the shutdown, apcupsd is terminated by the system, but the shutdown process
executes a script where apcupsd is recalled after the disks are synced and the machine is
idle. Apcupsd then requests the UPS to shut off the power (killpower).

Unfortunately on Windows, there is no such shutdown script that we are aware of and
no way for apcupsd to get control after the machine is idled. If this feature is important to
you, it is possible to do it by telling apcupsd to immediately issue the killpower command
after issuing the shutdown request. The danger in doing so is that if the machine is not
sufficiently idled when the killpower takes place, the disks will need to be rescanned (and
there is a possibility of lost data however small). Generally, UPSes have a shutdown grace
period which gives sufficient time for the OS to shutdown before the power is cut.

To implement this feature, you need to add the -p option to the apcupsd command line
that is executed by the system. Currently the procedure is manual. You do so by editing
the registry and changing the line:

c:\apcupsd\apcupsd.exe /service

found under the key:

HKEY_LOCAL_MACHINE Software\Microsoft\Windows\CurrentVersion\RunServices

to

c:\apcupsd\apcupsd.exe /service -p

If you have a Smart UPS, you can configure the kill power grace period, and you might
want to set it to 3 minutes. If you have a dumb UPS, there is no grace period and you
should not use this procedure. If you have a Back-UPS CS or ES, these UPSes generally
have a fixed grace period of 2 minutes, which is probably sufficient.

Chapter 17: The Windows Version of apcupsd 112

17.11 Power Down During Shutdown

Our philosophy is to shutdown a computer but not to power it down itself (as opposed
to having the UPS cut the power as described above). That is we prefer to idle a computer
but leave it running. This has the advantage that in a power fail situation, if the killpower
function described above does not work, the computer will continue to draw down the
batteries and the UPS will hopefully shutoff before the power is restore thus permitting an
automatic reboot.

Nevertheless some people prefer to do a full power down. To do so, you might want
to get a copy of PsShutdown, which does have a power down option. You can find it and
a lot more useful software at: http://www.sysinternals.com/ntw2k/freeware/pstools.shtml.
to use their shutdown program rather than the apcupsd supplied version, you simply edit:

c:\apcupsd\etc\apcupsd\apccontrol

with any text editor and change our calls to shutdown to psshutdown.

17.12 Command Line Options Specific to the Windows
Version

These options are not normally seen or used by the user, and are documented here
only for information purposes. At the current time, to change the default options, you must
either manually run apcupsd or you must manually edit the system registry and modify the
appropriate entries.

In order to avoid option clashes between the options necessary for apcupsd to run on
Windows and the standard apcupsd options, all Windows specific options are signaled with
a forward slash character (/), while as usual, the standard apcupsd options are signaled
with a minus (-), or a minus minus (–). All the standard apcupsd options can be used on
the Windows version. In addition, the following Windows only options are implemented:

/servicehelper
Run the service helper application

/service Start apcupsdas a service

/run Run the apcupsd application

/install Install apcupsd as a service in the system registry

/remove Uninstall apcupsd from the system registry

/about Show the apcupsd about dialogue box

/status Show the apcupsd status dialogue box

/events Show the apcupsd events dialogue box

/kill Stop any running apcupsd

/help Show the apcupsd help dialogue box

http://www.sysinternals.com/ntw2k/freeware/pstools.shtml

Chapter 17: The Windows Version of apcupsd 113

It is important to note that under normal circumstances the user should never need to
use these options as they are normally handled by the system automatically once apcupsd
is installed. However, you may note these options in some of the .pif files that have been
created for your use.

17.13 Building the Win32 Version from the Source

If you have the source code, follow the standard procedures for building apcupsd on
Unix in Chapter 2 [Building and Installing apcupsd], page 20 of this manual. Please don’t
forget to look at the system specifics for CYGWIN.

Installation: Serial-Line UPSes

Chapter 18: Overview of Serial-Interface UPSes 114

18 Overview of Serial-Interface UPSes

If you have a UPS that communicates via serial port, you need to do two things before
you can even think about configuring the software. First, you need to figure out whether it’s
a dumb (voltage-signalling) UPS or speaks the apcsmart protocol (see this discussion (see
[upstypes], page 7)). Second, if you have an interface cable from APC, you need to figure out
what kind it is. If you don’t have such a cable, you need to build one. A straight-through
serial cable won’t work (see [crazy], page 76).

According to Bill Marr the Belkin F5U109, also sold as F5U409 also works with apcupsd
for kernel versions 2.4.25 or higher and kernels 2.6.1 and higher. These newer kernels are
needed to have the patch that makes the mct u232 (Magic Control Technology) module
and other adapters work with RS-232 devices that do not assert the CTS signal.

Chapter 19: Connecting a Serial-Line UPS to a USB Port 115

19 Connecting a Serial-Line UPS to a USB Port

By using a special adaptor, you can connect your serial-line UPS to a USB port. If
you would like to free up your serial port and connect your existing serial port UPS to a
USB port, it is possible if you have one of the later kernels. You simply get a serial to USB
adapter that is supported by the kernel, plug it in and make one minor change to your
‘apcupsd.conf’ file and away you go. (Kern adds: Thanks to Joe Acosta for pointing this
out to me.)

The device that Joe Acosta and Kern are using is IOgear GUC232A USB 2 serial
adapter. Bill Marr informs us that it also works with a Back-UPS Pro 650 and the 940-
0095B cable.

At Kern’s site, running Red Hat 7.1 with kernel 2.4.9-12, he simply changed his
‘/etc/apcupsd/apcupsd.conf’ configuration line to be:

DEVICE /dev/ttyUSB0

Depending on whether or not you have hotplug working, you may need to explicitly
load the kernel modules usbserial and pl2303. In Kern’s case, this was not necessary.

Chapter 20: Connecting a APC USB UPS to either a PC USB or Serial Port 116

20 Connecting a APC USB UPS to either a PC
USB or Serial Port

An interesting fact is that the USB ports (actually an RJ45 connector) on APC UPSes
not only speak USB, but also serial apcsmart and dumb voltage-signalling as well! This
is something that one of our users discovered by accident. With the Custom RJ45 cable
(actually a RJ45 to serial cable) described below plugged into the APC UPS USB socket
at one end and the other end plugged into a serial port on your PC, any APC USB UPS
(except some of the newer really low cost models) will act as a serial-line device.

Chapter 21: Cables 117

21 Cables

You can either use the cable that came with your UPS (the easiest if we support it) or
you can make your own cable. We recommend that you obtain a supported cable directly
from APC.

If you already have an APC cable, you can determine what kind it is by examining
the flat sides of the two connectors where you will find the cable number embossed into the
plastic. It is generally on one side of the male connector.

To make your own cable you must first know whether you have a UPS that speaks the
apcsmart protocol or a "dumb" UPS that uses serial port line voltage signalling.

If you have an apcmart UPS, and you build your own cable, build a Smart-Custom
cable. If you have a voltage-Signalling or dumb UPS, build a Simple-Custom cable. If you
have a BackUPS CS with a RJ45 connector, you can build your own Custom-RJ45 cable.

21.1 Smart-Custom Cable for SmartUPSes

SMART-CUSTOM CABLE

Signal Computer UPS
DB9F DB9M

RxD 2 -------------------- 2 TxD Send
TxD 3 -------------------- 1 RxD Receive
GND 5 -------------------- 9 Ground

When using this cable with apcupsd specify the following in ‘apcupsd.conf’:
If you have an OS that requires DCD or RTS to be set before you can receive input,

you might try building the standard APC Smart 940-0024C cable listed below.

UPSCABLE smart
UPSTYPE apcsmart
DEVICE /dev/ttyS0 (or whatever your serial port is)

If you wish to build the standard cable furnished by APC (940-0024C), use the following
diagram.

APC Smart Cable 940-0024C

Signal Computer UPS
DB9F DB9M

RxD 2 -------------------- 2 TxD Send
TxD 3 -------------------- 1 RxD Receive
DCD 1 --*

|
DTR 4 --*
GND 5 -------------------- 9 Ground
RTS 7 --*

Chapter 21: Cables 118

|
CTS 8 --*

21.2 Smart Signalling Cable for BackUPS CS Models

If you have a BackUPS CS, you are probably either using it with the USB cable that
is supplied or with the 940-0128A supplied by APC, which permits running the UPS in
dumb mode. By building your own cable, you can now run the BackUPS CS models (and
perhaps also the ES models) using smart signalling and have all the same information that
is available as running it in USB mode.

The jack in the UPS is actually a 10 pin RJ45. However, you can just as easily use a
8 pin RJ45 connector, which is more standard (ethernet TX, and ISDN connector). It is
easy to construct the cable by cutting off one end of a standard RJ45-8 ethernet cable and
wiring the other end (three wires) into a standard DB9F female serial port connector.

Below, you will find a diagram for the CUSTOM-RJ45 cable:

CUSTOM-RJ45 CABLE

Signal Computer UPS UPS
DB9F RJ45-8 RJ45-10

RxD 2 ---------------- 1 2 TxD Send
TxD 3 ---------------- 7 8 RxD Receive
GND 5 ---------------- 6 7 Ground
FG Shield ---------------- 3 4 Frame Ground

The RJ45-8 pins are: looking at the end of the connector:

8 7 6 5 4 3 2 1

| |

|____|

The RJ45-10 pins are: looking at the end of the connector:

10 9 8 7 6 5 4 3 2 1

| |

|____|

For the serial port DB9F connector, the pin numbers are stamped in the plastic near
each pin. In addition, there is a diagram near the end of this chapter.

Chapter 21: Cables 119

Note, one user, Martin, has found that if the shield is not connected to the Frame
Ground in the above diagram (not in our original schematic), the UPS (a BackUPS CS 500
EI) will be unstable and likely to rapidly switch from power to batteries (i.e. chatter).

When using this cable with apcupsd specify the following in ‘apcupsd.conf’:

UPSCABLE smart
UPSTYPE apcsmart
DEVICE /dev/ttyS0 (or whatever your serial port is)

The information for constructing this cable was discovered and transmitted to us by
slither man. Many thanks!

21.3 Voltage-Signalling Cable for "dumb" UPSes

NOTE. YOU DO NOT HAVE THIS CABLE UNLESS YOU BUILT IT YOURSELF.
THE SIMPLE-CUSTOM CABLE IS NOT AN APC PRODUCT.

For "dumb" UPSes using voltage signalling, if you are going to build your own cable,
we recommend to make the cable designed by the apcupsd team as follows:

SIMPLE-CUSTOM CABLE

Signal Computer UPS
DB9F 4.7K ohm DB9M

DTR 4 --[####]--* DTR set to +5V by Apcupsd
|

CTS 8 ----------*--------- 5 Low Battery
GND 5 -------------------- 4 Ground
DCD 1 -------------------- 2 On Battery
RTS 7 -------------------- 1 Kill UPS Power

List of components one needs to make the Simple cable:
1. One (1) male DB9 connector, use solder type connector only.
2. One (1) female DB9/25F connector, use solder type connector only.
3. One (1) 4.7K ohm 1/4 watt 5% resistor.
4. resin core solder.
5. three (3) to five (5) feet of 22AWG multi-stranded four or more conductor cable.
1. Solder the resistor into pin 4 of the female DB9 connector.
2. Next bend the resistor so that it connects to pin 8 of the female DB9 connector.
3. Pin 8 on the female connector is also wired to pin 5 on the male DB9 connector. Solder

both ends.
4. Solder the other pins, pin 5 on the female DB9 to pin 4 on the male connector; pin

1 on the female connector to pin 2 on the male connector; and pin 7 on the female
connector to pin 1 on the male connector.

5. Double check your work.

Chapter 21: Cables 120

We use the DTR (pin 4 on the female connector) as our +5 volts power for the circuit. It
is used as the Vcc pull-up voltage for testing the outputs on any "UPS by APC" in voltage-
signalling mode. This cable may not work on a BackUPS Pro if the default communications
are in apcsmart mode. This cable is also valid for "ShareUPS" BASIC Port mode and is
also reported to work on SmartUPSes. However, the Smart Cable described above is much
simpler. To have a better idea of what is going on inside apcupsd, for the SIMPLE cable
apcupsd reads three signals and sets three:

Reads:
CD, which apcupsd uses for the On Battery signal when high.

CTS, which apcupsd uses for the Battery Low signal when high.

RxD (SR), which apcupsd uses for the Line Down
signal when high. This signal isn’t used for much.

Sets:
DTR, which apcupsd sets when it detects a power failure (generally

5 to 10 seconds after the CD signal goes high). It
clears this signal if the CD signal subsequently goes low
-- i.e. power is restored.

TxD (ST), which apcupsd clears when it detects that the CD signal
has gone low after having gone high - i.e. power is restored.

RTS, which apcupsd sets for the killpower signal -- to cause the UPS
to shut off the power.

Please note that these actions apply only to the SIMPLE cable, the signals used on the
other cables are different.

Finally, here is another way of looking at the CUSTOM-SIMPLE cable:

APCUPSD SIMPLE-CUSTOM CABLE

Computer Side | Description of Cable | UPS Side
DB9f | DB25f | | DB9m | DB25m
4 | 20 | DTR (5vcc) *below | n/c |
8 | 5 | CTS (low battery) *below | <- 5 | 7
2 | 3 | RxD (no line voltage) *below | <- 3 | 2
5 | 7 | Ground (Signal) | 4 | 20
1 | 8 | CD (on battery from UPS) | <- 2 | 3
7 | 4 | RTS (kill UPS power) | -> 1 | 8
n/c | 1 | Frame/Case Gnd (optional) | 9 | 22

Note: the <- and -> indicate the signal direction.

Optional connections of original SIMPLE-CUSTOM specification

Chapter 21: Cables 121

that are not used.

4.7K ohm
DTR 4 --[####]--* Note needed

|
RxD 2 ----------*--------- 3 Not used by Apcupsd

When using this cable with apcupsd specify the following in ‘apcupsd.conf’:

UPSCABLE simple
UPSTYPE dumb
DEVICE /dev/ttyS0 (or whatever your serial port is)

21.4 Other APC Cables that apcupsd Supports

apcupsd will also support the following off the shelf cables that are supplied by APC

940-0020B/C Simple Signal Only, all models.

940-0023A Simple Signal Only, all models.

940-0119A Simple Signal Only, Back-UPS Office, and BackUPS ES.

940-0024[B/C/G] SmartMode Only, SU and BKPro only.

940-0095[A/B/C] PnP (Plug and Play), all models.

940-1524C SmartMode Only

940-0127A/B USB Cables

940-0128A Simple Signal Only, Back-UPS CS in serial mode.

21.5 Voltage Signalling Features Supported by Apcupsd for
Various Cables

The following table shows the features supported by the current version of apcupsd
(3.8.5 or later) for various cables running the UPS in voltage-signalling mode.

Cable Power Loss Low Battery Kill Power Cable
Disconnected

940-0020B Yes No Yes No
940-0020C Yes Yes Yes No
940-0023A Yes No No No
940-0119A Yes Yes Yes No
940-0127A Yes Yes Yes No
940-0128A Yes Yes Yes No
940-0095A/B/C Yes Yes Yes No
simple Yes Yes Yes No

Chapter 21: Cables 122

21.6 Voltage Signalling

Apparently, all APC voltage-signalling UPSes have the same signals on the output
pins of the UPS. The difference at the computer end is due to different cable configurations.
Thus, by measuring the connectivity of a cable, one can determine how to program the
UPS. This is to be verified.

The signals presented or accepted by the UPS on its DB9 connector using the num-
bering scheme listed above is:

UPS Pin Signal meaning
1 <- Shutdown when set by computer for 1-5 seconds.
2 -> On battery power (this signal is normally low but

goes high when the UPS switches to batteries).
3 -> Mains down (line fail) See Note 1 below.
5 -> Low battery. See Note 1 below.
6 -> Inverse of mains down signal. See Note 2 below.
7 <- Turn on/off power (only on advanced UPSes only)

Note 1: these two lines are normally open, but close when the
appropriate signal is triggered. In fact, they are open collector
outputs which are rated for a maximum of +40VDC and 25 mA. Thus
the 4.7K ohm resistor used in the Custom Simple cable works
quite well.

Note 2: the same as note 1 except that the line is normally closed,
and opens when the line voltage fails.

21.7 The Back-UPS Office 500 signals

The Back-UPS Office UPS has a telephone type jack as output, which looks like the
following:

Looking at the end of the connector:

6 5 4 3 2 1

| |
| |
| |----------|
|__|

It appears that the signals work as follows:

UPS Signal meaning
1 (brown) <- Shutdown when set by computer for 1-5 seconds.

Chapter 21: Cables 123

2 (black) -> On battery power
3 (blue) -> Low battery
4 (red) Signal ground
5 (yellow) <- Begin signalling on other pins
6 (none) none

21.8 Analyses of APC Cables

21.8.1 940-0020B Cable Wiring

This diagram is for informational purposes and is not complete. Although we do
not know what the black box semi-conductor contains, we believe that we understand its
operation (many thanks to Lazar M. Fleysher for working this out).

This cable can only be used on voltage-signalling UPSes, and provides the On Battery
signal as well as kill UPS power. Most recent evidence (Lazar’s analysis) indicates that
this cable under the right conditions may provide the Low Battery signal. This is to be
confirmed.

APC Part# - 940-0020B

Signal Computer UPS
DB9F DB9M

CTS 8 -------------------- 2 On Battery
DTR 4 -------------------- 1 Kill power
GND 5 ---------------*---- 4 Ground

|
--- *---- 9 Common

DCD 1 ----|///|----------- 5 Low Battery
|\\\|

RTS 7 ----|///| (probably a
--- semi-conductor)

Thanks to Lazar M. Fleysher.

21.8.2 940-0020C Cable Wiring

This diagram is for informational purposes and may not be complete, we don’t rec-
ommend that use it to build you build one yourself. This cable can only be used on
voltage-signalling UPSes, and provides the On Battery signal, the Low Battery signal as
well as kill UPS power. In apcupsd versions 3.8.2 and prior, please set your UPSCABLE to
940-0020B. In version 3.8.3 and later, you may specify the cable as 940-0020C. Please note
that this diagram may not be accurate.

APC Part# - 940-0020C

Chapter 21: Cables 124

Signal Computer UPS
DB9F DB9M

CTS 8 -------------------- 2 On Battery
DTR 4 -------------------- 1 Kill power
GND 5 ---------------*---- 4 Ground

|
*---- 9 Common

RTS 7 -----[93.5K ohm]----- 5 Low Battery
or semi-conductor

21.8.3 940-0023A Cable Wiring

This diagram is for informational purposes and may not be complete, we don’t recom-
mend that use it to build you build one yourself. This cable can only be used on voltage-
signalling UPSes, and apparently only provides the On Battery signal. As a consequence,
this cable is pretty much useless, and we recommend that you find a better cable because
all APC UPSes support more than just On Battery. Please note that we are not sure the
following diagram is correct.

APC Part# - 940-0023A

Signal Computer UPS
DB9F DB9M

DCD 1 -------------------- 2 On Battery

3.3K ohm
TxD 3 --[####]-*

|
DTR 4 ---------*
GND 5 ---------------*---- 4 Ground

|
*---- 9 Common

21.8.4 940-0095A Cable Wiring

This is the definitive wiring diagram for the 940-0095A cable submitted by Chris Han-
son <cph at zurich.ai.mit.edu>, who disassembled the original cable, destroying it in the
process. He then built one from his diagram and it works perfectly.

Construction and operation of the APC #940-0095A cable.
This cable is included with the APC Back-UPS Pro PNP series.

UPS end Computer end
------- ------------

Chapter 21: Cables 125

47k 47k
BATTERY-LOW (5) >----R1----*----R2----*----< DTR,DSR,CTS (4,6,8)

| |
| |
| / E
| |/
| B |
*-------| 2N3906 PNP

|
|\

\ C
|
|
*----< DCD (1) Low Batt
|
|
R 4.7k
3
|

4.7k |
SHUTDOWN (1) >----------*----R4----*----< TxD (3)

|
| 1N4148
*----K|---------< RTS (7) Shutdown

POWER-FAIL (2) >--------------------------< RxD,RI (2,9) On Batt

GROUND (4,9) >--------------------------< GND (5)

Operation:

* DTR is "cable power" and must be held at SPACE. DSR or CTS may be
used as a loopback input to determine if the cable is plugged in.

* DCD is the "battery low" signal to the computer. A SPACE on this
line means the battery is low. This is signalled by BATTERY-LOW
being pulled down (it is probably open circuit normally).

Normally, the transistor is turned off, and DCD is held at the MARK
voltage by TxD. When BATTERY-LOW is pulled down, the voltage
divider R2/R1 biases the transistor so that it is turned on, causing
DCD to be pulled up to the SPACE voltage.

* TxD must be held at MARK; this is the default state when no data is
being transmitted. This sets the default bias for both DCD and
SHUTDOWN. If this line is an open circuit, then when BATTERY-LOW is

Chapter 21: Cables 126

signalled, SHUTDOWN will be automatically signalled; this would be
true if the cable were plugged in to the UPS and not the computer,
or if the computer were turned off.

* RTS is the "shutdown" signal from the computer. A SPACE on this
line tells the UPS to shut down.

* RxD and RI are both the "power-fail" signals to the computer. A
MARK on this line means the power has failed.

* SPACE is a positive voltage, typically +12V. MARK is a negative
voltage, typically -12V. Linux appears to translate SPACE to a 1
and MARK to a 0.

21.8.5 940-0095B Cable Wiring

This diagram is for informational purposes and may not be complete, we don’t recom-
mend that use it to build one yourself.

APC Part# - 940-0095B

Signal Computer UPS
DB9F DB9M

DTR 4 ----*
CTS 8 ----|
DSR 6 ----|
DCD 1 ----*
GND 5 ---------------*---- 4 Ground

|
*---- 9 Common

RI 9 ----*
|

RxD 2 ----*--------------- 2 On Battery
TxD 3 ----------[####]---- 1 Kill UPS Power

4.7K ohm

21.8.6 940-0119A Cable Wiring

This diagram is for informational purposes and may not be complete, we don’t rec-
ommend that use it to build you build one yourself. This cable is used with the BackUPS
Office UPSes.

APC Part# - 940-0119A

UPS Computer
pins pins Signal Signal meaning

Chapter 21: Cables 127

1 (brown) 4,6 DSR DTR <- Shutdown when set by computer for 1-5 seconds.
2 (black) 8,9 RI CTS -> On battery power
3 (blue) 1,2 CD RxD -> Low battery
4 (red) 5 Ground
5 (yellow) 7 RTS <- Begin signalling on other pins
6 (none) none

21.8.7 BackOffice ES

The BackUPS ES has a straight through serial cable with no identification on the
plugs. To make it work with apcupsd, specify the UPSCABLE 940-0119A and UPSTYPE
backups. The equivalent of cable 940-0119A is done on a PCB inside the unit. Thanks to
William Stock for supplying us with the information about the straight through cable, the
PCB, and the following diagram:

computer ----------- BackUPS-ES -----------------
DB9-M DB-9F
pin signal pin

4 DSR -> 4 --+
| diode resistor

6 DTR -> 6 --+---->|----/\/\/\---o kill power

1 DCD <- 1 --+
|

2 RxD <- 2 --+----------------+--o low battery
|

7 RTS -> 7 --------+--/\/\/\--+
|
+--/\/\/\--+

|
8 RI <- 8 --+----------------+--o on battery

|
9 CTS <- 9 --+

5 GND --- 5 ----------------------o ground

3 TxD 3 nc

21.8.8 BackUPS ES and CS in Serial mode with Cable 940-0128A

Though these UPSes are USB UPSes, APC supplies a serial cable (typically with a
green DB9 F connector) that has 940-0128A stamped into one side of the plastic serial
port connector. The other end of the cable is a 10 pin RJ45 connector that plugs into the

Chapter 21: Cables 128

UPS (thanks to Dean Waldow for sending me a cable!). Apcupsd version 3.8.5 and later
supports this cable when specified as UPSCABLE 940-0128A and UPSTYPE backups.
However, running in this mode much of the information that would be available in USB
mode is lost. In addition, when apcupsd attempts to instruct the UPS to kill the power,
it begins cycling about 4 times a second between battery and line. The solution to the
problem (thanks to Tom Suzda) is to unplug the UPS and while it is still chattering, press
the power button (on the front of the unit) until the unit beeps and the chattering stops.
After that the UPS should behave normally and power down 1-2 minutes after requested
to do so.

An amazing discovery by slither man allows one to build a CUSTOM-RJ45 cable (doc-
umented above) and run the BackUPS CS (and probably also the ES) in Smart mode.
Running it this way provides all the same information that you would get by running it
in USB mode. As a consequence, we recommend that you either purchase (where I don’t
know) or build your own CUSTOM-RJ45 cable rather than use the 940-0128A cable.

Thanks to all the people who have helped test this and have provided information on
the cable wiring, our best guess for the cable schematic is the following:

computer --------- Inside the Connector--------- UPS
DB9-F | | RJ45
pin - signal | | Pin - Color

| |
4 DSR ->|---+ |

| | diode resistor |
6 DTR ->|---+---->|----/\/\/\---o kill power | 8 Orange

| |
1 DCD <-|----+ |

| | |
2 RxD <-|----+----------------+--o low battery| 3 Brown

| | |
7 RTS ->|----------+--/\/\/\--+ |

| | |
| +--/\/\/\--+ |
| | |

8 RI <-|----+----------------+--o on battery | 2 Black
| | |

9 CTS <-|----+ |
| signal |

5 GND --|-----------------------o ground | 7 Red
| |

3 TxD | |
| chassis |

Chassis/GND |-----------------------o ground | 4 Black
| |
| Not connected | 1, 5, 6, 9, 10

Chapter 21: Cables 129

The RJ45 pins are: looking at the end of the connector:

10 9 8 7 6 5 4 3 2 1

| |

|____|

From Jan Babinski jbabinsk at pulsarbeacon dot com: (many thanks)
The BackUPS XS1000(BX-1000) ships with the 940-0127B usb cable and the optional

940-0128D serial cable. I’m trying to get it running under OpenBSD so usb is out of the
question. I’ve tried smart serial with the custom cable, but that’s not working, so I’m stuck
with dumb serial over 940-0128D.

I have noticed that this cable is not supported by apcupsd so I set out to find out
how much different this cable is compared with the supported ones. After tearing the cable
apart (see schematic below) I noticed that it is functionally similar to the 940-0128A cable
except for NC on (6) DTR and (2) RD on the computer side.

Cable 940-0128D

DB9(Computer) RJ45-10(UPS)

(5) (1) ____________
(o o o o o) [oooooooooo]
\ o o o o / [____________]
(9) (6) (10) [_] (1)

RI(9)<---+
|

CTS(8)<---+--- E 2N2222(NPN)
\|___

____ /| B |
| C |
| |
+---vvvv---+--[>|------<(2)OnBatt

RTS(7)>---| 2k 1N5819
+---vvvv---+--[>|------<(3)LowBatt
| |
+--- C |

\|___|
/| B

DCD(1)<------- E 2N2222(NPN)

DTR(4)>-------------------------->(8)KillPwr

Chapter 21: Cables 130

GND(5)----------------------------(7)Signal GND
(Shield)--------------------------(4)Chassis GND

Cable 940-0127B

USB(Computer) RJ45-10(UPS)
_________ ____________
| = = = = | [oooooooooo]
|_________| [____________]
(1) (4) (10) [_] (1)

+5V(1)-----------(1)+5V
DATA+(2)-----------(9)DATA+
DATA-(3)-----------(10)DATA-

GND(4)-----------(7)Signal GND
(Shield)-----------(4)Chassis GRND

21.9 Win32 Implementation Restrictions for Simple UPSes

Due to inadequacies in the Win32 API, it is not possible to set/clear/get all the serial
port line signals. apcupsd can detect: CTS, DSR, RNG, and CD. It can set and clear: RTS
and DTR.

This imposes a few minor restrictions on the functionality of some of the cables. In
particular, LineDown on the Custom Simple cable, and Low Battery on the 0023A cable
are not implemented.

21.10 Internal Apcupsd Actions for Simple Cables

This section describes how apcupsd 3.8.5 (March 2002)
treats the serial port line signals for simple cables.

apcaction.c:
condition = power failure detected
cable = CUSTOM_SIMPLE
action = ioctl(TIOCMBIS, DTR) set DTR (enable power bit?)

apcaction.c:
condition = power back
cable = CUSTOM_SIMPLE
action = ioctl(TIOCMBIC, DTR) clear DTR (clear power bit)
action = ioctl(TIOCMBIC, ST) clear ST (TxD)

Chapter 21: Cables 131

apcserial.c:
condition = serial port initialization
cable = 0095A, 0095B, 0095C
action = ioctl(TIOMBIC, RTS) clear RTS (set PnP mode)

cable = 0119A, 0127A, 0128A
action = ioctl(TIOMBIC, DTR) clear DTR (killpower)
action = ioctl(TIOMBIS, RTS) set RTS (ready to receive)

apcserial.c:
condition = save_dumb_status
cable = CUSTOM_SIMPLE
action = ioctl(TIOMBIC, DTR) clear DTR (power bit?)
action = ioctl(TIOMBIC, RTS) clear RTS (killpower)

cable = 0020B, 0020C, 0119A, 0127A, 0128A
action = ioctl(TIOMBIC, DTR) clear DTR (killpower)

cable = 0095A, 0095B, 0095C
action = ioctl(TIOMBIC, RTS) clear RTS (killpower)
action = ioctl(TIOMBIC, CD) clear DCD (low batt)
action = ioctl(TIOMBIC, RTS) clear RTS (killpower) a second time!

apcserial.c:
condition = check_serial

cable = CUSTOM_SIMPLE
action = OnBatt = CD
action = BattLow = CTS
action = LineDown = SR

cable = 0020B, 0020C, 0119A, 0127A, 0128A
action = OnBatt = CTS
action = BattLow = CD
action = LineDown = 0

cable = 0023A
action = Onbatt = CD
action = BattLow = SR
action = LineDown = 0

cable = 0095A, 0095B, 0095C
action = OnBatt = RNG
action = BattLow = CD
action = LineDown = 0

Chapter 21: Cables 132

apcserial.c
condition = killpower

cable = CUSTOM_SIMPLE, 0095A, 0095B, 0095C
action = ioctl(TIOMCBIS, RTS) set RTS (kills power)
action = ioctl(TIOMCBIS, ST) set TxD

cable = 0020B, 020C, 0119A, 0127A, 0128A
action = ioctl(TIOMCBIS, DTR) set DTR (kills power)

; 25-pin and 9-pin; Female End, Internal Apcupsd Actions for Simple Cables, Cables,]

21.11 RS232 Wiring and Signal Conventions

DB-25 Pin # DB-9 Pin # Name DTE-DCE
Description

1 – FG — Frame
Ground/Chassis
GND

2 3 TD —> Transmitted
Data, TxD

3 2 RD <— Received Data,
RxD

4 7 RTS —> Request To
Send

5 8 CTS <— Clear To Send
6 6 DSR <— Data Set Ready
7 5 SG —- Signal Ground,

GND
8 1 DCD <— Data Carrier

Detect
9 – – — Positive DC test

voltage
10 – – — Negative DC test

voltage
11 – QM <— Equalizer mode
12 – SDCD <— Secondary Data

Carrier Detect
13 – SCTS <— Secondary Clear

To Send
14 – STD —> Secondary

Transmitted Data
15 – TC <— Transmitter

(signal) Clock
16 – SRD <— Secondary Re-

ceiver Clock
17 – RC —> Receiver (sig-

nal) Clock
18 – DCR <— Divided Clock

Receiver

Chapter 21: Cables 133

19 – SRTS —> Secondary Re-
quest To Send

20 4 DTR —> Data Terminal
Ready

21 – SQ <— Signal Quality
Detect

22 9 RI <— Ring Indicator
23 – – —> Data rate

selector
24 – – <— Data rate

selector
25 – TC <— Transmitted

Clock

21.12 Pin Assignment for the Serial Port (RS-232C), 25-pin
and 9-pin, Female End

13 1 5 1
_______________________________ _______________
\ / \ / RS232-connectors
\ / \ / looking into the
--------------------------- ----------- end of the cable.
25 14 9 6

The diagram above represents the Female end of the cable. The
male end is the same, but looking from inside the cable.

DTE : Data Terminal Equipment (i.e. computer)
DCE : Data Communications Equipment (i.e. UPS)
RxD : Data received; 1 is transmitted "low", 0 as "high"
TxD : Data sent; 1 is transmitted "low", 0 as "high"
DTR : DTE announces that it is powered up and ready to communicate
DSR : DCE announces that it is ready to communicate; low=modem hang-up
RTS : DTE asks DCE for permission to send data
CTS : DCE agrees on RTS
RI : DCE signals the DTE that an establishment of a connection is attempted
DCD : DCE announces that a connection is established

; 25-pin and 9-pin; Female End, Cables,]

21.13 Ioctl to RS232 Correspondence

#define TIOCM_LE 0x001
#define TIOCM_DTR 0x002
#define TIOCM_RTS 0x004
#define TIOCM_ST 0x008

Chapter 21: Cables 134

#define TIOCM_SR 0x010
#define TIOCM_CTS 0x020
#define TIOCM_CAR 0x040
#define TIOCM_RNG 0x080
#define TIOCM_DSR 0x100
#define TIOCM_CD TIOCM_CAR
#define TIOCM_RI TIOCM_RNG
#define TIOCM_OUT1 0x2000
#define TIOCM_OUT2 0x4000

Chapter 22: Testing Serial-Line UPSes 135

22 Testing Serial-Line UPSes

If you have a serial-line UPS, there are some tests you should run before the general
ones described in the Testing (see Chapter 5 [Testing Apcupsd], page 43) section.

To test your computer’s connection with a serial-line UPS, you first need to establish
that the serial line is functioning, and then that the UPS is responding to commands.
This can be a bit tricky, especially with a dumb voltage-signalling interface, because it
is completely quiescent when there are no commands being passed, and the command
repertoire doesn’t include any self-tests.

Because it is easy to configure a serial cable incorrectly in such a way as to cause
premature shutdowns of the UPS power, we strongly recommend, especially for voltage-
signaling (dumb) UPSes, that you do most of the initial testing with your computer plugged
into the wall rather than your UPS. Thus if the UPS power is suddenly shut off, your
computer will continue to run. We also recommend using safe-apccontrol as described
below, until you are sure that the signaling is correct.

Also note that if you launch the execution of apcupsd while your voltage-signaling UPS
is on battery power, it is very likely that your UPS will immediately shut off the power.
This is due to the initialization of the serial port line signals, which often looks to the UPS
like a shutdown command.

Finally, double-check the state of your cabling and UPS indicator lights frequently
during testing. For voltage-signaling UPSes, apcupsd is not currently able to detect whether
or not the serial cable is connected. In addition, some simple signaling UPSes with certain
cable combinations are not able to detect the low battery condition. For more details please
see Section 21.5 [Voltage Signalling Features Supported by Apcupsd for Various Cables],
page 121.

22.1 Establishing Serial Port Connection

Once you have compiled, installed, and invoked apcupsd, you should wait to allow
apcupsd to configure itself and establish contact with the UPS.

If you see the following message about 30 seconds after starting apcupsd:

apcupsd FATAL ERROR in apcserial.c at line 156
PANIC! Cannot communicate with UPS via serial port.

it means that apcupsd tried for about 30 seconds to establish contact with the UPS via
the serial port, but was unable to do so. Before continuing, you must correct this problem.
Some of the possible sources of the problem are:

You have not configured the correct serial port name on the DEVICE directive in your
‘apcupsd’ configuration file.
The serial port that you have chosen has logins enabled. You must disable logins
on that port, otherwise, the system prevents apcupsd from using it. Normally, the
file ‘/etc/inittab’ specifies the ports for which a getty process is started (on Sun
machines, the serial port program equivalent to getty is called ttymon). You must
disable this for the port that you wish to use.

Chapter 22: Testing Serial-Line UPSes 136

Make sure you are doing your testing as root otherwise, you may have permissions
problems accessing the serial port.
You may have cabling problems, either with an incorrect cable, or the incorrect cable
specification directive in the configuration file.
You may have a problem with the ‘/etc/apcupsd/acpupsd.conf’ file. For example,
check that you have specified the correct type of UPS and the correct networking
directives. For more details, see the Chapter 3 [After Installation], page 35.
If you have a SmartUPS 5000 RM 15U or similar model, that comes with a
"Web/SNMP management card" in one of the "Smart Slots", this card may interfere
with the serial port operation. If you are having problems, please remove this card
and try again. Supposedly V3.0 of the card firmware has been corrected to properly
release the serial port.
Ensure that you have no other programs that are using the serial port. One user
reported that he had problems because the serial port mouse (gpm) was using the
same port as apcupsd. This causes intermittent seemingly random problems.
If you are using a WinNT or Win2000 machine, the OS is probably attempting to
attach a serial mouse to the port you are using (COM1 or COM2). To prevent this,
edit your ‘c:\boot.ini’ file, and you will find a line that looks something like the
following:

multi(0)disk(0)rdisk(0)partition(1)\WINNT="Windows NT Workstation Version 4.00"

Add the following to the end of the line: ‘/NoSerialMice:COM1’ (or COM2) so that
the new line looks like:

multi(0)disk(0)rdisk(0)partition(1)\WINNT="Windows NT Workstation Version 4.00" /NoSerialMice:COM1

If you are using a WinNT or Win2000 machine, try connecting apcupsd to COM2
rather than COM1 (be sure to change your ‘c:\apcupsd\etc\apcupsd\apcupsd.conf’
to reflect the change).
If you are using a Solaris machine, you may have similar problems as described above
for the WinNT machine. A possible fix is documented in the Sun section of the Con-
figuration chapter of this manual.
Try connecting your UPS to another machine. If it works, then you probably have a
bad serial port card. As unlikely as this may sound, at least two of our users have had
to replace bad serial port cards.
Try doing an lsof /dev/ttyS0 where you replace the /dev/ttyS0 with your serial port
name. If you get no output, the port is free (or there is no physical port). If you get
output, then another program is using the port, and you should see which one.
Try doing a dmesg | grep tty. This may show you if a program has grabbed the port.
(Thanks to Joe Acosta for the suggestion.)
If all else fails, make sure your system is configured for serial port support.
If you are running Linux, check your ‘/proc’ file system. For example: cat
/proc/devices should print something like 4 ttyS if you have a serial port. If your
serial port is working, a cat /proc/interrupts should show the serial port usage (e.g.
4: 294553 XT-PIC serial) Also, cat /proc/ioports should show up something like

Chapter 22: Testing Serial-Line UPSes 137

03f8-03ff : serial(auto). Or, cat /proc/tty should print a line like serial /dev/ttyS 4
64-127 serial. Finally, a cat /proc/tty/driver/serial should print something like
the following:

serinfo:1.0 driver:5.05c revision:2001-07-08
0: uart:16550A port:3F8 irq:4 baud:9600 tx:1503168 rx:1461721 fe:8

The first thing to do is to look at your log file, usually ‘/var/log/messages’ because
apcupsd writes more detailed information to the log file whenever there is an error.

If you have a UPS that uses apcsmart protcol (see table of types (see [type table],
page 8) for a list of the UPSes using these protocols), you can manually test the serial
communications with the UPS by starting a serial port communications program (such as
minicom, tip, or cu) with the settings 2400 8N1 (2400 baud, 8 bits, no parity, 1 stop bit). Be
extremely careful what you send to your UPS as certain characters may cause it to power
down or may even cause damage to the UPS. Try sending an upper case Y to the UPS
(without a return at the end). It should respond with SM. If this is not the case, review
the possible problems listed above. If you fat finger the Y and enter y instead, no cause for
alarm, you will simply get the APC copyright notice.

Once you are sure that serial port communications is working, proceed to the next test.

22.2 Using apctest on Serial-Line UPSses

On an apcsmart serial-line UPS, apctest will give you access to the battery of low-level
tests we described in Section 5.9 [apctest], page 50. If you have a voltage-signalling UPS, it
enables a different test repertoire which is described here, Among other things, if you are
uncertain about what kind of cable you have, you may be able to use apctest to figure that
out.

Shutdown apcupsd if it is running. Make sure your ‘/etc/apcupsd/apcupsd.conf’ file
has UPSTYPE backups and UPSCABLE simple Normally apctest will have been built and
installed by default, otherwise, you can explicitly build it on Unix with:

cd <apcupsd-source-directory>
make apctest
./apctest

on Win32 systems, use:

make apctestwin32
./apctest

It will present you with the following output

2001-02-07 04:08:26 apctest 3.8.5 (3 January 2002) redhat
Checking configuration ...
sharenet.type = DISABLE
cable.type = CUSTOM_SIMPLE
mode.type = BK

Chapter 22: Testing Serial-Line UPSes 138

Setting up serial port ...
Creating serial port lock file ...
Doing prep_serial() ...
Hello, this is the apcupsd Cable Test program.
This part of apctest is for testing dumb UPSes (ones that uses signaling rather than commands.
Most tests enter a loop polling every second for 10 seconds.

Then it will present you with the following list of choices:

1) Test 1 - normal mode
2) Test 2 - no cable
3) Test 3 - no power
4) Test 4 - low battery (requires test 3 first)
5) Test 5 - battery exhausted
6) Test 6 - kill UPS power
7) Test 7 - run tests 1 through 5
8) Guess which is the appropriate cable
9) quit

Select test number:

Run tests 1, 2, and 3. Note, none of the currently supported cables will indicate a
change for test 2. You can then run test 8 to see what cable it thinks you should be using.
Finally run test 4.

apctest can also be run for Smart UPSes.
The print out of your testing will be written to the file ‘apctest.output’. If you are

unable to solve your problem, you can try posting that file to the development mailing
list, and perhaps we can help you. In this case, please also include information on your
operating system, which version of apcupsd you are using, your UPS model, and also your
‘apcupsd.conf’ file.

22.2.1 Expected apctest Signals for a UPS

If you have configured your UPS as:

UPSTYPE backups
UPSCABLE APC_940_0119A

or APC_940_0127A
or APC_940_0128A
or APC_940_0020B
or APC_940_0020C

here are typical signals you would expect to see in the output from the various tests of
apctest:

Test 1 normal: RTS for cables (0119A 0127A 0128A)
Test 2 no serial cable: not important
Test 3 no AC power: CTS for all cables

Chapter 22: Testing Serial-Line UPSes 139

Test 4 batteries exhausted: CTS and CD for all cables

Note: RTS if set in Test 1 will probably also be set in all the other tests. This is not
important, what counts is the appearance of CTS when the power fails and additionally
CD when the batteries are low.

22.2.2 Expected apctest Signals for a BackUPS Pro

If you have configured your UPS as:

UPSTYPE backupspro
UPSCABLE APC_940_0095A

or APC_940_0095C

here are the typical signals you would expect to see in the output from the various tests
of apctest:

Test 1 normal: RTS not set
Test 2 no serial cable: not important
Test 3 no AC power: RNG
Test 4 batteries exhausted: RNG and CD

Note: RTS should never be set in any of the tests as it is the killpower signal. What is
important is the appearance of RNG when the power fails and additionally CD when the
batteries are low.

Chapter 23: Troubleshooting Serial Line communications 140

23 Troubleshooting Serial Line communications

23.1 Determining Which Voltage-Signaling Cable You Have

The most frequently encountered problem with voltage-signalling UPSes (e.g. BackUPS
650) is that you have incorrectly specified which cable is being used. All cables furnished
by APC have the cable number stamped on the side of the computer connector end of the
cable. Using this number with apcupsd will normally work fine. If you do not know what
cable you have, you can use the apctest program to determine the type of the cable.

For simple signaling UPSes, you should not use simple in the cable specification (i.e.
UPSCABLE simple) unless you have made the cable yourself according to the wiring dia-
gram given in the cables chapter of this manual.

23.2 Once you have established serial communications

Once you have established that apcupsd can talk to the UPS over the serial part, go do
the series of functional tests described in the main Testing (see Chapter 5 [Testing Apcupsd],
page 43) section.

One additional note applies:

23.2.1 Bizarre Intermittent Behavior

In one case, a user reported that he received random incorrect values from the UPS
in the status output. It turned out that gpm, the mouse control program for command
windows, was using the serial port without using the standard Unix locking mechanism. As
a consequence, both apcupsd and gpm were reading the serial port. Please ensure that if
you are running gpm that it is not configured with a serial port mouse on the same serial
port.

Chapter 24: Recalibrating the UPS Runtime 141

24 Recalibrating the UPS Runtime

Note: In a future release of apcupsd this procedure will be replaced by a daemon
operation that can be performed on all types of UPS.

This section does not apply to voltage-signalling or dumb UPSes such as the older
BackUPS models.

Smart UPSes internally compute the remaining runtime, and apcupsd uses the value
supplied by the UPS. As the batteries age (after say two or three years), the runtime
computation may no longer be accurate since the batteries no longer hold the same charge.
As a consequence, in the event of a power failure, the UPS and thus apcupsd can report
a runtime of 5 minutes remaining when in fact only one minute remains. This can lead to
a shutdown before you might expect it, because regardless of the runtime remaining that
is reported, the UPS will always correctly detect low batteries and report it, thus causing
apcupsd to correctly shutdown your computer.

If you wish to have the UPS recalibrate the remaining runtime calculations, you can
do so manually as the current version of apcupsd does not support this feature. To do so,

Shutdown apcupsd
contact your UPS directly using some terminal program such as minicom, tip, or cu
with the settings 2400 8N1 (2400 baud, 8 bits, no parity, 1 stop bit). Be extremely
careful what you send to your UPS as certain characters may cause it to power down or
may even cause damage to the UPS. Try sending an upper case Y to the UPS (without
a return at the end). It should respond with SM. If this is not the case, read the chapter
on testing. If you fat finger the Y and enter y instead, no cause for alarm, you will
simply get the APC copyright notice.
when you are sure you are properly connected send an upper case D (no cr). This will
put the UPS into calibration mode, and it will drain the battery down to 25% capacity
(35% for a Matrix) at which point it will go back on the mains. In doing so, it will
recompute the runtime calibration.
If you wish to abort the calibration, enter a second D command.
When you are done, restart apcupsd.

In principle, you should be able to do this with the computer powered by the UPS,
but if you wish to be completely safe, you should plug your computer into the wall prior to
performing the runtime calibration. In that case, you will need to artificially load the UPS
with light bulbs or other means. You should supply a load of about 30 to 35% but not more
than 50%. You can determine the load by looking at the output of the apcaccess status
command while apcupsd is running.

You should not run the recalibration command more than once or twice per year as
discharging these kinds of batteries tends to shorten their life span.

24.1 Status Logging On Serial-Line UPSes

Serial-line UPSes that speak the apcsmart protocol log all of the events described in
the Status Format (see Chapter 27 [apcupsd Status Logging], page 154) section of the

Chapter 24: Recalibrating the UPS Runtime 142

Technical Reference. Voltage-signalling UPSes, on the other hand, have a much narrower
data channel. They can only report a small handful of conditions.

The following summarizes (rather sketchily, sorry) the data you can expect to get from
this obsolete hardware. All corrections and additions will be welcome.

From BackUPS Pro and SmartUPS v/s:

LINEFAIL : OnlineStatus
BATTSTAT : BatteryStatus
MAINS : LineVoltageState
LASTEVNT : LastEventObserved

BackUPS and NetUPS Simple Signals

LINEFAIL : OnlineStatus
BATTSTAT : BatteryStatus

Chapter 25: DATA Logging 143

25 DATA Logging

This feature is somewhat outdated and not often used.
Data logging consists of periodically logging important data concerning the operation

of the UPS. For the definitive definition of the format, see log data() in apcreports.c. The
format varies according to the UPS model and the information available from the UPS.

For UPS models, NBKPRO, SMART, SHARESMART, and MATRIX, the output is
written in a format very similar to what PowerChute writes. That is:

MinLineVoltage, MaxLineVoltage, OutputVoltage, BatteryVoltage, LineFre-
quency, LoadPercent, UPSTemperature,AmbientTemperature,Humidity,LineVoltage,
BatteryCharge,toggle

Any value that is not supported by your UPS such as AmbientTemperature and Hu-
midity will be blank or possibly as 0.0. In any case the commas before and after that field
will still be output. The toggle value alternates from 0 to 1 on each line. This was added
at user request so that no two adjacent samples are identical.

An actual example from the log file is:

Nov 2 12:43:05 matou apcupsd[23439]: 224.9,227.5,226.2,27.74,50.00,100.0,30.6,,,226.2,50.0,1

Technical Reference

Chapter 26: Configuration Directive Reference 144

26 Configuration Directive Reference

Configuration directives in ‘/etc/apcupsd/apcupsd.conf’ control the behavior of the
apcupsd daemon. For most installations it is only necessary to set a handful of general
directives. The rest can be left at their defaults unless you have an exotic configuration.

26.1 General Configuration Directives

In general, each of these directives is required (ecept that the DEVICE directive is
ignored for UPSCABLE ether).

UPSTYPE <type of APC UPS you have>
The name of a driver. Should be one of ‘dumb’, ‘apcsmart’, ‘net’, ‘usb’, ‘snmp’,
or ‘test’. This describes your interface type.
The UPSTYPE directive can be defined during installation by using the --
with-upstype= option of the ./configure program.

UPSCABLE <type of cable you are using>>

[simple | 940-0020B | 940-0023A]
[smart | 940-0024B | 940-0024C]
[940-1524C | 940-0024G | 940-0095A | 940-0095B | 940-0095C | 940-0119A]
[ether | usb]

The --with-upscable= option of ./configure can be used to set a default for
this directive during the your build.

DEVICE <name of device>
Specify which device is used for UPS communications. For serial ports, it is
usually something like ‘/dev/ttyS0’. For USB ports, you may leave the name
of the device blank (no specification) and apcupsd will automatically search the
standard locations for the UPS.
Normally, the ./configure program will set an appropriate default value. You
may also specify the --with-serial-dev= option of the ./configure program
to set this directive at build time.
If you have specified UPSTYPE net, then the device name to be specified
consists of hostname:port where the hostname is the fully qualified name or IP
address of the host (NIS server) and the port (optional) is the port to use to
contact the server.
If you specified UPSTYPE snmp, then the device name becomes host-
name:vendor:community. Please see the SNMP chapter (see Chapter 14
[Support for SNMP UPSes], page 93) in this manual for more details.

LOCKFILE <path to lockfile>
This option tells apcupsd where to create a lockfile for the USB or serial port
in the specified directory. This is important to keep two programs from reading
or writing the port at the same time. Please note that although the directive
name is LOCKFILE, you are actually specifying the lock file path. apcupsd

Chapter 26: Configuration Directive Reference 145

automatically appends the name of the device when creating the file. On most
systems, this directive is automatically set by the ./configure program. You
may also explicitly set it during the build process by using the --with-lock-
dir= option of the ./configure program.

26.2 Configuration Directives Used by the Network
Information Server

None of these directives are required for proper operation of apcupsd. For the Network
Information Server to work, it must be enabled in the configuration (default) with --
enable-nis

NETSERVER [on | off]
This configuration directive turns the network information server on or off. If
it is on, apcupsd will spawn a child process that serves STATUS and EVENTS
information over the network. This information is currently used by the Web-
based CGI programs. The default is on. In some cases, for added security,
you may want to invoke a separate information server daemon from the inetd
daemon. In that case, NETSERVER should be off.

NISIP <IP-address>
This directive specifies an IP address on which NIS server will listen for incoming
connections. Default value is 0.0.0.0 that means any incoming request will be
serviced but if you want it to listen to a single subnet you can set it up to
that subnet address, for example 192.168.10.0. Additionally you can listen for
a single IP like 192.168.10.1. You may also use the --with-nisip= option of
the ./configure program to set this directive during the build.
This directive does not work on Win32 machines because inet ipton() is not
implemented there.

NISPORT <port>
This configuration directive specifies the port to be used by the apcupsd Net-
work Information Server. The default is platform dependent, but typically
3551, which we have received from IANA as the official apcupsd network-
ing port. If you change this port, you must manually change the #define
SERV TCP PORT in cgi/upsfetch.c and rebuild the CGI programs. An al-
ternative is to use the --with-nis-port= option of the ./configure program
during the build. In this case, all the appropriate locations will be automatically
changed.

EVENTSFILE <filename>
If you want the apcupsd network information server to provide the last 10 events
via the network, you must specify a file where apcupsd will save these events.
The default is: ‘/etc/apcupsd/apcupsd.events’. Currently, apcupsd will save
at most the last 50 events. Periodically (once an hour by default), apcupsd will
check the size of this file. When more than 50 events are recorded, apcupsd
will truncate the file to the most recent 10 events. Consequently this file will
not grow indefinitely. Although we do not recommend it, you may change these

Chapter 26: Configuration Directive Reference 146

values by editing apcevents.c and changing the appropriate defines. Be aware
that if you set these values to very large numbers, apcupsd may make excessive
memory demands on the system during the data access and file truncation
operations.
This filename may also be specified at build time by using the --with-log-dir=
option of the ./configure program.

26.3 Configuration Directives used during Power Failures

In general, none of these directives are required. However, if you have a voltage-
signalling (dumb) UPS with a cable that does not support the Low Battery signal, you must
set the TIMEOUT directive to force a shutdown. Please see the Cables (see Chapter 21
[Cables], page 117) section of this manual for more details.

ANNOY <time in seconds>
Specify the time in seconds between messages requesting logged in users to get
off the system during a power failure. This timer starts only when the UPS is
running on batteries. The default is 300 seconds (5 minutes). apcupsd sends the
annoy messages by invoking the apccontrol script with the annoyme argument.
The default is to send a wall message on Unix systems and a popup message in
Windows.
The value of ANNOYDELAY must be greater than the value of ANNOY in
order to receive annoy messages (this doesn’t make sense, and means that the
default values do not generate annoy messages: KES).
Note that if NOLOGON is set to disable the annoy messages will also be dis-
abled.

ANNOYDELAY <time in seconds>
Specify delay time in seconds before apcupsd begins requesting logged in users
to get off the system during a power failure. This timer starts only after the
UPS is running on batteries. This timer is reset when the power returns. The
default is 60 seconds. Thus, the first warning to log off the system occurs after
60 seconds on batteries, assuming that NOLOGON is not set to disable.

NOLOGON <specifies when apcupsd should prevent user logins>
[disable | timeout | percent | minutes | always] are valid types.
The type specified allows you define the point when apcupsd will create the
‘/etc/nologin’ file and thus when user logins are prohibited. Once the
‘/etc/nologin’ file is created, normal users are prevented from logging in.
Control of when this file is created is important for allowing systems with big
UPSes to run as normally until the system administrator determines the need
for preventing user logins. The feature also allows the system administrator
to hold the "ANNOY" factor until the ‘/etc/nologin’ file is created. The
default is always if no NOLOGON directive is specified.
As far as I can tell, the only useful types are disable and always since the
difference in the time when the logout warning is given and shutdown occurs
for the other types is very short (KES).

Chapter 26: Configuration Directive Reference 147

disable prevents apcupsd from creating the nologin file. Consequently, any
user can login during a power failure condition. Also, the ANNOY
feature is disabled so users will not be warned to logoff the system.

timeout specifies that apcupsd should prohibit logins after the UPS is on
batteries for 90% of the time specified on the TIMEOUT config-
uration directive. Note! Normally you don’t want to specify a
TIMEOUT value, so this option is probably not too useful (KES).

percent specifies that apcupsd should prohibit logins when the remaining
battery charge percentage reaches 110% or less than the value spec-
ified on the BATTERYLEVEL configuration directive. Thus if the
BATTERYLEVEL is specified as 15, apcupsd will prohibit logins
when the battery charge drops below 16% (15% X 110% = 16%).

minutes specifies that apcupsd should prohibit logins when the remaining
runtime in minutes reaches 110% or less than the value specified on
the MINUTES configuration directive. Thus if MINUTES is set to
3, apcupsd will prohibit logins when the remaining runtime is less
than 3 minutes (3 X 110% = 3).

always causes apcupsd to immediately prohibit logins when a power failure
occurs. This will also enable the ANNOY feature.

BATTERYLEVEL <percent of battery>
If BATTERYLEVEL is specified, during a power failure, apcupsd will halt the
system when the remaining battery charge falls below the specified percent-
age. The default is 5 percent. This directive is ignored for dumb (voltage-
signalling) UPSes. To totally disable this counter, set BATTERYLEVEL -1 in
your ‘apcupsd.conf’ file.

MINUTES <battery runtime in minutes>
If MINUTES is specified, during a power failure, apcupsd will shutdown the
system when the remaining runtime on batteries as internally calculated by the
UPS falls below the time specified. The default is 3. This directive is ignored for
dumb (voltage-signalling) UPSes. It should be noted that some UPSes report
an incorrect value for remaining runtime when the battery is fully charged. This
can be checked by examining the TIMELEFT value as printed in the output of
an apcaccess status command. If the value is zero or otherwise unreasonable,
your UPS is probably broken. In this case, we recommend that you disable this
timer by setting MINUTES -1 in your ‘apcupsd.conf’ file.

TIMEOUT <time in seconds>
After a power failure, apcupsd will halt the system when TIMEOUT seconds
have expired. A value of zero disables this timer. Normally for all Smart UPS
models and dumb UPSes with cables that support low battery detection, this
should be zero so that the shutdown time will be determined by the battery
level and/or remaining runtime (see above) or in the case of a voltage-signalling
UPS, when the battery is exhausted. This command is required for dumb UPSes
that do not provide a battery exhausted signal (only testing can determine this
point). For more information, see the Testing (see Chapter 5 [Testing Apcupsd],

Chapter 26: Configuration Directive Reference 148

page 43) section of this manual. This timer can also be useful if you want some
slave machines to shutdown before other machines to conserve battery power.
It is also useful for testing apcupsd because you can force a rapid shutdown by
setting a small value (e.g. 60) and pulling the plug to the UPS.

When apcupsd is running in master mode (UPSCLASS netmaster), and a shut-
down condition is determined, apcupsd will notify each of the slaves to perform
a shutdown then apcupsd will sleep for 30 seconds before issuing the shutdown
of its own computer. If you need the master to wait additional time before
shutting down (to allow for shutdown of slower slaves or of slaves running soft-
ware that requires more time to shutdown — e.g. databases), you can do so
by adding additional sleep() commands to ‘/etc/apcupsd/apccontrol’ in each
case that causes a shutdown.

TIMEOUT, BATTERYLEVEL, and MINUTES can be set together without
problems. apcupsd will react to the first case or test that is valid. Normally
SmartUPS users will set TIMEOUT to zero so that the system is shutdown
depending on the percentage battery charge remaining (BATTERYLEVEL) or
the remaining battery runtime (MINUTES).

KILLDELAY <time in seconds>
If killdelay is set, apcupsd will continue running after a shutdown has been
requested, and after the specified time in seconds, apcupsd will attempt to shut
off the UPS the power. This directive should normally be disabled by setting
the value to zero, but on some systems such as Win32 systems apcupsd cannot
regain control after a shutdown to force the UPS to shut off the power. In
this case, with proper consideration for the timing, the KILLDELAY directive
can be useful. Please be aware, if you cause apcupsd to kill the power to
your computer too early, the system and the disks may not have been properly
prepared. In addition, apcupsd must continue running after the shutdown is
requested, and on Unix systems, this is not normally the case as the system
will terminate all processes during the shutdown.

26.4 Configuration Directives used to Control System
Logging

STATTIME<time>
This directive supplies the time interval between writes to the STATUS file. If
set to zero, the STATUS file will not be written. Please note that in a future
version of apcupsd the STATUS file code will disappear since its functionality
has been replaced by the Network Information Server and by apcaccess status,
as a consequence, it is normally disabled by setting it to zero.

STATFILE <file>
This directive specifies the file to be used when writing the STATUS informa-
tion. The default is ‘/etc/apcupsd/apcupsd.status’.

Chapter 26: Configuration Directive Reference 149

DATATIME<time>
This directives supplies the time interval between writes of PowerChute&tm;
like data information to the log file. See the Data (see Chapter 25 [DATA
Logging], page 143) section of this manual for additional details.

FACILITY<log-facility>
The facility directive can be used to change the system logging class or facility.
The default is DAEMON. This parameter can be useful if you wish to direct
the apcupsd system logging information to other than your system default files.
See the Logging section of this manual for additional details.

26.5 Configuration Directives for Sharing a UPS

The following directives apply to the master/slave networking mode of apcupsd where
multiple machines can be powered by the same UPS. One machine, the master, will have
a serial port connection to the UPS, and the other machines, the slaves, will obtain their
information via the network from the master.

Note, as of version 3.10.x, the old master/slave code is by default turned off in the
configuration. You must explicitly enable it by including a --enable-master-slave option
on your ./configure command before building the source.

In addition to the old master/slave code, there is now a new network driver enabled
with --enable-net (default disabled) that can be used to control a slave from any version
of apcupsd running NIS. This is a much more flexible system of controlling slaves because a
slave machine that also has NIS turned on can thus act as a master for another slave with
--enable-net turned on. With this mode turned on, the slave obtains the address of the
master from the DEVICE directive, which takes the form hostname[:port] as a consequence,
none of the directives apply for this form of networking. In addition, for this mode to work,
you must specify UPSTYPE net so that the proper driver is loaded.

The remainder of this section presents directives that apply to the old master/slave
code that must be enabled by the enable-master-slave configuration option.

UPSCLASS <class of operation>
[standalone | shareslave | sharemaster] and [netslave | netmaster] are valid
types. [standalone | netslave | netmaster] are tested classes. [shareslave |
sharemaster] classes are being tested.

The default is standalone and should be used for all machines powered by the
UPS and having a serial port connection to the UPS, but where there are no
other computers dependent on power from the same UPS. This is the normal
case.

Use netmaster, if and only if you have a serial port connection to the UPS and
there are other machines deriving power from the same UPS. This is required
in all master configuration files.

Use netslave if and only if you have no serial port connection to the UPS, but
you derive power from it. This is required in all slave configuration files, and
in this case, you will also have UPSCABLE set to ether.

Chapter 26: Configuration Directive Reference 150

Use shareslave if and only if you are using a ShareUPS and connected to a
BASIC Port with Simple Signal. This code is not fully tested.
Use sharemaster, if and only if you are using a ShareUPS and connected to the
ADVANCED Port Smart Signal control. This code is not fully tested.

UPSMODE [disable | share | net | sharenet] are valid types.
[disable | net] are the only known and tested classes.
[share | sharenet] classes are being tested.
For normal standalone operations, you will set UPSMODE to disable to indicate
that you are disabling the master/slave networking.
However, if you are using a single UPS to power several computers and you
have configured master and slave computers, then set this value to net.
Use share for two or seven (2/7) additional simple signal ports on a SmartAc-
cessories(tm) (internal/external box) for SmartUPSes. The share and sharenet
code is not fully tested.

NETTIME <time in seconds>
The interval in seconds that the master uses to send information to slave ma-
chines. This rate is automatically set to 1 second if the UPS goes on batteries
and reset to your specified value when the mains power returns. A typical value
might be 60 seconds.

NETPORT <IP port number>
This port number is used for communications in the master/slave networking
code. Note that the master and each slave must have the same port number
specified on the NETPORT directive in the configuration file. This port may
also be specified during installation by using the --with-net-port= option of
the ./configure program.
The NETPORT should not be confused with the port number for the Network
Information Server which is specified with the SERVERPORT configuration
directive.

MASTER <name of the master> for slave machines.
Used in slave configuration files, this is the network name of the master which is
authorized to send commands to this slave. In all cases (of which I am aware),
when you specify a MASTER directive, you will also specify UPSCABLE ether
since your information about the UPS will come via the network from a master.
The slave machine will be shutdown whichever occurs first: either at the request
of the master when it does a shutdown or when the values you have specified
for TIMEOUT, BATTERYLEVEL, or MINUTES expire (these should work
but have not been fully tested). Consequently, if you want the slaves to begin
shutting down before the master, you can do so by adjusting the values in the
configuration file. If you want the slave to remain up until the master shuts
down, you should set TIMEOUT, BATTERYLEVEL, and MINUTES all to
zero.
For proper functioning of the slave, you must specify the same UPSTYPE in
the slave configuration file as is in the master configuration file.

Chapter 26: Configuration Directive Reference 151

It should be noted that the master and slaves continue to communicate over
the network even after the master has issued a shutdown command to the
slaves. This is because the master apcupsd continues to run until it receives
the shutdown signal from the system. This is important to ensure that all the
slaves have been properly notified of the shutdown.
We recommend that the machine names used on the MASTER and SLAVE
directives be put in your ‘/etc/hosts’ file so that apcupsd will be able to
resolve the machine name during startup and shutdown even if DNS is not
running. Alternatively, you can use IP addresses on the MASTER and SLAVE
directives, but this is less flexible.

SLAVE <name of slave(s)> used only in MASTER configuration files.
Used in master configuration files, this is the name of a slave machine that
depends on this master. There can be a maximum of 20 slaves attached to one
master. Thus you can specify multiple SLAVE directives in a master configu-
ration file. Only one slave name can be specified per SLAVE directive, thus for
multiple slaves, specify multiple SLAVE directives.
As noted above the master and slaves continue to communicate over the network
even after the master has issued a shutdown command to the slaves. This is
because the master apcupsd continues to run until it receives the shutdown
signal from the system. This is important to ensure that all the slaves have
been properly notified of the shutdown.
We recommend that the machine names used on the MASTER and SLAVE
directives be put in your ‘/etc/hosts’ file so that apcupsd will be able to
resolve the machine name during startup and shutdown even if DNS is not
running. Alternatively, you can use IP addresses on the MASTER and SLAVE
directives, but this is less flexible.

USERMAGIC < user defined magic> used only in SLAVE configuration files.
The USERMAGIC directive is a sort of password that gives a second level of
identification security in a slave configuration file. It is a character string up
to 17 characters in length. It should be unique for each slave. When the slave
makes initial contact with the master, this string is passed to the master. Then
on each transmission from the master to the slave, the string is passed back
to the slave, which checks that it is the correct string before accepting the
master’s information. This string should be different for each and every slave
on the network. This directive is not required.

26.6 Configuration Directives Used to Set the UPS EPROM

NOTE. THESE ARE DEPRECIATED AND NO LONGER WORK IN APCUPSD
PLEASE USE APCTEST

The values specified with the following directives are only used if the --configure
option is specified on the apcupsd command line, and the UPS is capable of internal EPROM
programming. In that case, apcupsd attempts to set the values into the UPSes EPROM.

Under normal operations, the values for these parameters specified in the configuration
file are not used. Instead, they are read from the UPS EPROM by apcupsd. See Section 26.6

Chapter 26: Configuration Directive Reference 152

[Configuration Directives Used to Set the UPS EPROM], page 151 of this manual for further
details before attempting to reprogram your EEPROM.

SENSITIVITY <sets sensitivity level>
(H)igh, (M)edium, (L)ow

This value determine how sensitive the UPS is to the mains quality and voltage
fluctuations. The more sensitive it is, the quicker the UPS will switch to battery
power when the mains line quality is bad. Normally, this should be set to H,
but if you find your UPS switching to batteries frequently, you might want to
try a less sensitive setting, providing that your computer equipment tolerates
the poor quality mains. This value is written to the UPS EPROM when the
configure option is specified.

Under normal apcupsd operations (no --configure option), apcupsd will read
the value stored in the UPS and display it in the STATUS output.

WAKEUP <set wakeup delay>
The UPS power restart delay value in [0,60,180,300] in seconds after the UPS
has shut down during a power failure. This is to prevent the power from coming
back on too quickly after a power down, and is important for those who have
high rpm drives that need to spin down before powering them up again. Some
older SCSI models are very sensitive to this problem. Default is zero. This
value is written to the UPS EPROM when the --configure option is specified.

Under normal apcupsd operations (no --configure option), apcupsd will read
the value stored in the UPS and display it in the STATUS output.

SLEEP <set sleep delay>
The UPS delay or grace period in [20,180,300,600] seconds before the UPS cuts
the power to your equipment. The default is 20 seconds. This value is written
to the UPS EPROM when the --configure option is specified.

Under normal apcupsdoperations (no --configure option), apcupsd will read
the value stored in the UPS and display it in the STATUS output.

LOTRANSFER <lower limit of ups batt. transfer>
This sets the low line voltage point at which to switch over to batteries. Different
values are permitted based on the UPS model, classification, and manufacture
date. Use apcaccess eeprom to show you which values are permitted. This
value is written to the UPS EPROM when the --configure option is specified.

Under normal apcupsdoperations (no --configure option), apcupsd will read
the value stored in the UPS and display it in the STATUS output.

HITRANSFER <upper limit of ups batt. transfer>
This sets the high line voltage point to switch over to batteries. Different values
are permitted based on the UPS model, classification, and manufacture date.
Use apcaccess eeprom to show you which values are permitted. This value is
written to the UPS EPROM when the --configure option is specified.

Under normal apcupsdoperations (no --configure option), apcupsd will read
the value stored in the UPS and display it in the STATUS output.

Chapter 26: Configuration Directive Reference 153

RETURNCHARGE <min. batt. charge level>
This parameter specifies what battery percentage charge is necessary before the
UPS will supply power to your equipment after a power down. Different values
are permitted based on the UPS model, classification, and manufacture date.
Use apcaccess eeprom to show you which values are permitted. This value is
written to the UPS EPROM when the --configure option is specified.
Under normal apcupsdoperations (no --configure option), apcupsd will read
the value stored in the UPS and display it in the STATUS output.

BEEPSTATE <alarm beep state>
This parameter tells the UPS when it can sound its audio alarm. These settings
are based on discrete events related to the remaining capacity of the UPS.

0 immediately upon power failure

T power failure + 30 seconds

L low battery power

N never

UPSNAME <string>
This is an eight character string. This is the UPS name that will be stored in
the UPS EPROM.

BATTDATE <string>
This is an eight character string that is the last date the batteries were changed.

Chapter 27: apcupsd Status Logging 154

27 apcupsd Status Logging

There is a good deal of information available about the UPS and apcupsd’s status.
This document describes the format of that information. Normally you will get at it via
apcaccess, but there are other ways as well.

27.1 Status report format

The STATUS output is in ASCII format with a single data value or piece of information
on each line output. Because not all UPSes supply the same information, the output varies
based on the type of UPS that you are using. In general, if the information is not available
for your UPS, the data portion of the output record will contain an N/A indicating that
the information is not available.

Status logging consists of periodically logging ALL available information concerning
the UPS. Since the volume of data is rather large (over 1000 bytes per status), the STATUS
data is not automatically sent to the system log file, instead, it is written as a series of data
records to a specific file (normally ‘/etc/apcupsd/apcupsd.status’).

After each write, the file is rewound so that the size of the file remains constant. At the
current time, this file is 1135 bytes. The format of this file is very similar to the old apcupsd
procfs file. The STATUS file is kept for backward compatibility and will be eliminated in
a future version of apcupsd. The preferred method for obtaining this information is from
apcaccess or by using the CGI interface (see Section 7.4 [apcupsd Network Monitoring [CGI]
Programs], page 58).

To make reading the status data reliable via a named pipe, the first record written
contains a version number, the number of records that follow the first record, and the
total number of bytes in those subsequent records. An actual example of such a status file
(/etc/apcupsd/apcupsd.status) is:

Consequently, the first record always consists of 24 bytes (23 characters followed by a
newline). This record starts with APC and as indicated in the example above is followed
by 28 records consisting of 675 bytes. The last record begins with END APC and contains
the date and time matching the DATE record.

Documentation of each record needs to be written. In the coming weeks, I plan to add
additional records and possibly change the names of some of the fields.

When this data is written to a file, it is written as two records, the first record, and all
the other records together. In reading the file, it can be either be read a record at a time,
or in one big read.

When this data is written to syslog(), it is written a record at a time. The first record
is the first 24 bytes. By having the number of records and the size in the first record, the
complete status can be reliably reassembled.

27.2 Status Report Example

An example of output from an international SmartUPS 1000 follows:

Chapter 27: apcupsd Status Logging 155

DATE : Wed Sep 27 17:30:23 CEST 2000
HOSTNAME : polymatou.sibbald.com
RELEASE : 3.7.3-20000925
CABLE : Custom Cable Smart
MODEL : SMART-UPS 1000
UPSMODE : Stand Alone
STARTTIME: Wed Sep 27 10:39:23 CEST 2000
UPSNAME : UPS_IDEN
STATUS : ONLINE
LINEV : 235.3 Volts
LOADPCT : 9.3 Percent Load Capacity
BCHARGE : 100.0 Percent
TIMELEFT : 130.0 Minutes
MBATTCHG : 5 Percent
MINTIMEL : 3 Minutes
MAXTIME : 0 Seconds
MAXLINEV : 239.2 Volts
MINLINEV : 234.0 Volts
OUTPUTV : 236.6 Volts
SENSE : High
DWAKE : 000 Seconds
DSHUTD : 020 Seconds
DLOWBATT : 02 Minutes
LOTRANS : 196.0 Volts
HITRANS : 253.0 Volts
RETPCT : 000.0 Percent
ITEMP : 32.8 C Internal
ALARMDEL : 5 seconds
BATTV : 27.9 Volts
LINEFREQ : 50.0 Hz
LASTXFER : Line voltage notch or spike
NUMXFERS : 0
XONBATT : N/A
TONBATT : 0 seconds
CUMONBATT: 0 seconds
XOFFBATT : N/A
SELFTEST : NO
STESTI : 336
STATFLAG : 0x08 Status Flag
DIPSW : 0x00 Dip Switch
REG1 : 0x00 Register 1
REG2 : 0x00 Register 2
REG3 : 0x00 Register 3
MANDATE : 07/31/99
SERIALNO : QS9931125245
BATTDATE : 07/31/99

Chapter 27: apcupsd Status Logging 156

NOMOUTV : 230
NOMBATTV : 24.0
HUMIDITY : N/A
AMBTEMP : N/A
EXTBATTS : 0
BADBATTS : N/A
FIRMWARE : 60.11.I
APCMODEL : IWI
END APC : Wed Sep 27 17:30:31 CEST 2000

27.3 Status Report Fields

The meaning of the above variables are:

APC is the header record indicating the STATUS format revision level, the number
of records that follow the APC statement, and the number of bytes that follow
the record.

DATE is the date and time that the information was last obtained from the UPS.

HOSTNAME
is the name of the machine that collected the UPS data.

RELEASE
is the apcupsd release number.

CABLE is the cable as specified in the configuration file.

MODEL is the UPS model as derived from information from the UPS.

UPSMODE
is the mode in which apcupsd is operating.

STARTTIME
is the time/date that apcupsd was started.

UPSNAME
is the name of the UPS as stored in the EEPROM.

STATUS is the current status of the UPS (ONLINE, CHARGING, ONBATT,...)

MASTERUPD
is the last time the master sent an update to the slave. This value is present
only in slave configurations.

LINEV is the current line voltage as returned by the UPS.

LOADPCT
is the percentage of load capacity as estimated by the UPS.

BCHARGE
is the percentage charge on the batteries.

TIMELEFT
is the remaining runtime left on batteries as estimated by the UPS.

Chapter 27: apcupsd Status Logging 157

MBATTCHG
if the battery charge percentage (BCHARGE) drops below this value, apcupsd
will shutdown your system.

MINTIMEL
apcupsd will shutdown your system if the remaining runtime equals or is below
this point.

MAXTIME
apcupsd will shutdown your system if the time on batteries exceeds this value.
A value of zero disables the feature.

MAXLINEV
is the maximum line voltage since the last STATUS as returned by the UPS.

MINLINEV
is the minimum line voltage since the last STATUS as returned by the UPS.

OUTPUTV
is the voltage the UPS is supplying to your equipment.

SENSE is the sensitivity level of the UPS to line voltage fluctuations.

DWAKE is the amount of time the UPS will wait after a power off condition when the
power is restored.

DSHUTD is the grace delay that the UPS gives after receiving a power down command
from apcupsd before it powers off your equipment.

DLOWBATT
is the remaining runtime below which the UPS sends the low battery signal.
At this point apcupsd will force an immediate emergency shutdown.

LOTRANS
is the line voltage below which the UPS will switch to batteries.

HITRANS
is the line voltage above which the UPS will switch to batteries.

RETPCT is the percentage charge that the batteries must have after a power off condition
before the UPS will restore power to your equipment.

STATFLAG
is a status flag indicating the UPS status. See STATUS.

ITEMP is the internal UPS temperature as supplied by the UPS.

ALARMDEL
is the delay period for the UPS alarm.

BATTV is the battery voltage as supplied by the UPS.

LINEFREQ
is the line frequency in Hertz as given by the UPS.

LASTXFER
is the reason for the last transfer to batteries.

Chapter 27: apcupsd Status Logging 158

NUMXFERS
the number of transfers to batteries since apcupsd startup.

XONBATT
time and date of last transfer to batteries, or N/A.

TONBATT
time in seconds currently on batteries, or 0.

CUMONBATT
total (cumulative) time on batteries in seconds since apcupsd startup.

XOFFBATT
time and date of last transfer from batteries, or N/A.

SELFTEST
is the results of the last self test, and may have the following values: OK -
self test indicates good battery BT - self test failed due to insufficient battery
capacity NG - self test failed due to overload NO - No results (i.e. no self test
performed in the last 5 minutes).

STESTI is the interval in hours between automatic self tests.

STATFLAG
status flag. English version is given by STATUS.

DIPSW is the dip switch settings.

REG1 is the value from the UPS fault register 1.

REG2 is the value from the UPS fault register 2.

REG3 is the value from the UPS fault register 3.

MANDATE
is the date the UPS was manufactured.

SERIALNO
is the UPS serial number.

BATTDATE
is the date that batteries were last replaced.

NOMOUTV
is the output voltage that the UPS will attempt to supply when on battery
power.

NOMBATTV
is the nominal battery voltage.

HUMIDITY
is the humidity as measured by the UPS.

AMBTEMP
is the ambient temperature as measured by the UPS.

EXTBATTS
is the number of external batteries as defined by the user. A correct number
here helps the UPS compute the remaining runtime more accurately.

Chapter 27: apcupsd Status Logging 159

BADBATTS
is the number of bad battery packs.

FIRMWARE
is the firmware revision number.

APCMODEL
is the old APC model identification code.

END APC
is the time and date that the STATUS record was written.

27.4 Logging the STATUS Information

If specified in the configuration file, the STATUS data will also be written to the system
log file. Please note, that it would not normally be wise to write this data to a normal system
log file as there is no mechanism in syslog() to rewind the file and hence the log file would
quickly become enormous. However, in two cases, it can be very useful to use syslog() to
write this information.

The first case is to set up your ‘syslog.conf’ file so that the data is written to a named
pipe. In this case, normally not more than about 8192 bytes of data will be kept before it
is discarded by the system.

The second case is to setup your syslog.conf file so that the status data is sent to
another machine, which presumably then writes it to a named pipe. Consequently, with
this mechanism, provides a simple means of networking apcupsd STATUS information.

Although we mention system logging of STATUS information, we strongly recommend
that you use apcaccess or the CGI interface to get this information.

Chapter 28: The Shutown Sequence and its Discontents 160

28 The Shutown Sequence and its Discontents

28.1 Shutdown Sequence

If you experienced so problems with the testing procedures, or if you are porting
apcupsd to another system, or you are simply curious, you may want to know exactly
what is going on during the shutdown process.

The shutdown sequence is as follows:
apcupsd detects that there is a power problem and it calls /etc/apcupsd/apccontrol
powerout, which normally sends a message to all users informing them of a potential
problem.
After approximately 5 seconds in the power problem mode, apcupsd calls
/etc/apcupsd/apccontrol onbattery, which normally sends a message to all users
informing them that the UPS is on batteries.
When one of the conditions listed below occurs, apcupsd issues a shutdown command
by calling /etc/apcupsd/apccontrol doshutdown, which should perform a shutdown
of your system using the system shutdown(8) command. You can modify the behavior
by editing the ‘/etc/apcupsd/apccontrol’ script, but doing so will make it more
complicated to upgrade to the next apcupsd version.
The conditions that trigger the shutdown can be: running time on batteries have
expired (TIMEOUT), the battery runtime remaining is below the configured value
(BATTERYLEVEL), the estimated remaining runtime is below the configured value
(MINUTES), or the UPS signals that the batteries are exhausted.
A shutdown could also be initiated if apcupsd detects that the batteries are no longer
functioning correctly. This case, though very unusual, can happen at any time even if
there is proper mains voltage, and /etc/apcupsd/apccontrol emergency is called.
Just before initiating any shutdown through the apccontrol script, apcupsd will cre-
ate the file ‘/etc/apcupsd/powerfail’. This file will be used later in the shutdown
sequence to recall apcupsd after syncing of the disks to initiate a power off of the UPS.
If the ‘/etc/nologin’ file has not already been created, it will normally be created
during the shutdown sequence to prevent additional users from logging in (see the
NOLOGIN configuration directive).
Even though apcupsd has requested the system to perform a shutdown, it continues
running. If it is a master with slaves, it will inform the slaves to do a shutdown. They
perform their shutdown by calling /etc/apcupsd/apccontrol remotedown.
When the system signals apcupsd to do exit, it does so. This is part of the nor-
mal system shutdown (at least on Unix and Linux systems) and the exact time that
apcupsd receives the termination signal depends on how the shutdown links (usually
in ‘/etc/rc.d’) are set.
Note that on Windows NT systems, apcupsd apparently continues to run as a Service
even though the machine is "shutdown".
During the shutdown of the system after apcupsd has been forced to exit, one of the
last things done by the system shutdown is to call the halt script, which is usually in

Chapter 28: The Shutown Sequence and its Discontents 161

‘/etc/rc.d/halt’ or ‘/etc/rc.d/init.d/halt’, or possibly in ‘/sbin/init.d/rc.0’
depending on your system. If apcupsd was properly installed, this standard halt script
was modified to include a bit of new logic just before the final halt of the system.
It first tests if the file ‘/etc/apcupsd/powerfail’ exists, and if it does, it executes
/etc/apcupsd/apccontrol killpower. It is this last step that will cause apcupsd to
be re-executed with the --killpower option on the command line. This option tells
apcupsd to inform the UPS to kill the power.
This final step is important if you want to ensure that your system will automatically
reboot when the power comes back on. The actual code used on the Red Hat version
is:

See if this is a powerfail situation. # ***apcupsd***
if [-f /etc/apcupsd/powerfail]; then # ***apcupsd***
echo # ***apcupsd***
echo "APCUPSD will now power off the UPS" # ***apcupsd***
echo # ***apcupsd***
/etc/apcupsd/apccontrol killpower # ***apcupsd***
echo # ***apcupsd***
echo "Please ensure that the UPS has powered off before rebooting" # ***apcupsd***
echo "Otherwise, the UPS may cut the power during the reboot!!!" # ***apcupsd***
echo # ***apcupsd***
fi # ***apcupsd***

The above code must be inserted as late as possible in the halt script. On many systems,
such as Red Hat, all the disk drives were unmounted, then remounted read-only, thus
permitting access to the ‘/etc’ files and the apcupsd executable. If your system does not
explicitly remount the disks, you must remount them in read-only mode in the code that you
add. Examples of code fragments that do this can be found in the ‘distributions/suse’
subdirectory of the source.

If you are not able to insert the above code in your halt script because there is no
halt script, or because your halt script calls the init program as some Unix systems do, you
can either just forget about powering off the UPS, which means that your machine will not
automatically reboot after a power failure, or there is yet another alternative, though not
at all as satisfying as inserting code in the halt script.

Only if you cannot insert the appropriate code in the halt script, when you
start apcupsd, normally from the ‘/etc/rc.d/init.d/apcupsd’ script, use the
--kill-on-powerfail option. This will cause apcupsd to program the UPS to shutoff the
power just before it (apcupsd) does the system shutdown. Please note that this is not the
most ideal solution. Read on to understand why.

A very important consideration is that you must set the EEPROM in your UPS so
that it waits a sufficient time for the system to halt before it shuts off the UPS power. The
current value as well as the permitted values for your UPS can be determined by executing:

apcaccess eeprom

The output should look something like the following:

Chapter 28: The Shutown Sequence and its Discontents 162

apcaccess eeprom

Valid EPROM values for the SMART-UPS 1000

Config Current Permitted
Description Directive Value Values
===
Upper transfer voltage HITRANSFER 253 253 264 271 280
Lower transfer voltage LOTRANSFER 196 196 188 208 204
Return threshold RETURNCHARGE 0 00 15 50 90
Output voltage on batts OUTPUTVOLTS 230 230 240 220 225
Sensitivity SENSITIVITY H H M L L
Low battery warning LOWBATT 2 02 05 07 10
Shutdown grace delay SLEEP 20 020 180 300 600
Alarm delay BEEPSTATE 0 0 T L N
Wakeup delay WAKEUP 0 000 060 180 300
Self test interval SELFTEST 336 336 168 ON OFF

The line of interest for you is the Shutdown grace delay, which can be changed using
the SLEEP (see [SLEEP <set sleep delay>], page 152) directive in your apcupsd.conf file.
The default value is 20 seconds, but generally, you can set it to 180, 300, or 600 seconds
depending on your UPS. See the EEPROM (see Section 7.6 [Configuring Your EEPROM],
page 66) this manual for further details on how to change this EPROM value.

If you use the --kill-on-powerfail option, you run the risk of having the computer
power cut before the system has shutdown. Even if the grace period is rather long, if
something goes wrong in the shutdown, well, it is up to you to decide.

If apcupsd has successfully shutdown your computer and powered off the UPS during
a power outage, you can control whether or not your computer is automatically rebooted
when the power returns.

The UPS contains two internal EPROM values that determine when it will restore
power to your computer after a full power shutdown. They are the RETURNCHARGE (see
[RETURNCHARGE <min batt charge level>], page 152) percentage and the WAKEUP
(see [WAKEUP <set wakeup delay>], page 152) delay. Briefly, the RETURNCHARGE
specifies what percentage charge the battery must have before the power is restored. Higher
values are recommended in regions where the power goes up and down frequently. The
WAKEUP delay is a simple time delay. Most sites will have both of these at zero, or perhaps
the RETURNCHARGE set to 15. Please follow the links to the Configuration section of
this manual for more information. See the EEPROM (see Section 7.6 [Configuring Your
EEPROM], page 66) of this manual for further details on how to change these EPROM
values.

28.2 Shutdown Problems

Obviously if your halt script is not properly modified, apcupsd will not be able to shut
off the power to the UPS, and if the power returns before the batteries are exhausted your

Chapter 28: The Shutown Sequence and its Discontents 163

system will not automatically reboot. In any case, your machine should have been cleanly
shut down.

28.3 Master/Slave Shutdown

In master/slave configurations, however, the master cannot be 100 percent sure that
the slaves have all shutdown before it performs the power off. As a consequence, it is
possible that the master will shut off the power before the slave has finished shutdown.
If this is the case, the best procedure is to put an appropriate sleep command in the
‘/etc/apcupsd/apccontrol’ file on the master. For example to give the slaves 30 additional
seconds to shutdown, one would add:

sleep 30

just after the line that reads

doshutdown)

in the ‘apccontrol’ file (approximately line 79 — depending on your system version).

Also, on a slave machine, you do not want to use the modified halt script since it will
recall apcupsd, which will detect that it is a slave (i.e. no connection to the UPS) and will
complain that it cannot do the killpower. This situation is not harmful just annoying and
possibly confusing.

One possible problem during shutdown can be caused by remnants of old versions.
Please be sure to delete or rename all prior versions (‘/usr/local/sbin/apcupsd’ or
‘/sbin/powersc’).

28.4 Startup

Normally, apcupsd is automatically started when your system is rebooted. This nor-
mally occurs because the startup script apcupsd is linked into the appropriate places in
‘/etc/rc.d’. On most Linux systems, there is a program called chkconfig(8) that will au-
tomatically link the startup script. This program is invoked by the make install scripts,
or it is explicitly done for those systems that do not have chkconfig(8). If this is not the
case, you can either link it in appropriately yourself or explicitly call it from your rc.local
file. The appropriate manual way to startup apcupsd is by executing:

<path>/apcupsd start

where <path> is normally ‘/etc/rc.d’ or ‘/etc/rc.d/init.d’ depending on your sys-
tem (isn’t Unix wonderful? :-)). Using this script is important so that any files remaining
around after a power failure are removed. Likewise, shutting down apcupsd should be done
with the same script:

<path>/apcupsd stop

Chapter 28: The Shutown Sequence and its Discontents 164

28.5 Windows Considerations

Please see the end of Windows chapter (see 〈undefined〉 [Installation on Windows],
page 〈undefined〉) of this manual for conderations pertaining to shutdown and killpower on
Windows.

Chapter 29: APC smart protocol 165

29 APC smart protocol

The APC UPS protocol was originally analyzed by Pavel Korensky with additions
from Andre H. Hendrick beginning in 1995, and we want to give credit for good, hard work,
where credit is due. After having said that, you will see that Steven Freed built much of
the orginal apcupsd information file. [Comment inserted by Riccardo Facchetti]

The start of this chapter of the apcupsd manual in HTML format was pulled from the
Network UPS Tools (NUT) site. It has been an invaluable tool in improving apcupsd, and
I consider it the Bible of APC UPS programming. In the course of using it, I have added
information gleaned from apcupsd and information graciously supplied by APC. Hopefully,
the additions made herein can benefit the original author and his programming project,
and maybe some day, the apcupsd project and the NUT project can join forces.

29.1 Description

Here’s the information on the elusive APC smart signaling protocol used by their higher
end units (Back-UPS Pro, Smart-UPS, Matrix-UPS, etc). What you see here has been
collected from a variety of sources. Some people analyzed the chatter between PowerChute
and their hardware. Others sent various characters to the UPS and figured out what the
results meant.

29.2 RS-232 differences

Normal 9 pin serial connections have TxD on 3 and RxD on 2. APC’s smart serial
ports put TxD on pin 1 and RxD on pin 2. This means you go nowhere if you use a normal
straight through serial cable. In fact, you might even power down the load if you plug one
of those cables in. This is due to the odd routing of pins - DTR and RTS from the PC
usually wind up driving the on/off line. So, when you open the port, they go high and
poof your computer dies.

Originally this evil hack was used to connect the UPS to the PC when this page was
first being built. As you can see, I cheated and neglected the ground (only 2 wires!) and
it still worked. This method can be used for playing around, but for professional systems
this is obviously not a viable option.

That hack didn’t work out so well (damned cats), so it was retired quite awhile back.
The most practical solution was to go out and BUY the DOS/Win version of PowerChute
just for the black (smart) cable. I recommend doing the same thing if you actually care
about this thing working properly. Of course, if you have one of the newer packages that
came with PowerChute, you already have the cable you need.

29.3 Diagram for cable hackers

If you are handy with cable creation tools, check out the 940-0024C clone diagram.
That’s the black "smart" cable normally provided with APC models sold after 1996. The
loopback pins on that diagram are used to keep PowerChute happy by allowing cable de-
tection. If you use the NUT apcsmart driver, those pins don’t matter.

http://www.exploits.org/nut/library/apcsmart.html
http://www.exploits.org/nut
http://www.exploits.org/nut/library/940-0024C.jpg
http://www.exploits.org/nut/

Chapter 29: APC smart protocol 166

Many thanks to Steve Draper for providing this scan.

For additional information on cables, see the section on custom cables (see Chapter 21
[Cables], page 117) in this manual.

29.4 The Smart Protocol

Despite the lack of official information from APC, this table has been constructed.
It’s standard RS-232 serial communications at 2400 bps/8N1. Don’t rush the UPS while
transmitting or it may stop talking to you. This isn’t a problem with the normal single
character queries, but it really does matter for multi-char things like "@000". Sprinkle a
few calls to usleep() in your code and everything will work a lot better.

The following table describes the single character Code or command that you can send
to the UPS, its meaning, and what sort of response the UPS will provide. Typically, the
response shown below is followed by a newline (\n in C) and a carriage return (\r in C).
If you send the UPS a command that it does not recognize or that is not available on your
UPS, it will normally respond by "NA" for not available, otherwise the response is given in
the "Typical results" column. >

Code Meaning Typical results
^A Model string SMART-UPS

700
^N Turn on UPS

(send twice,
with > 1.5s
delay between
chars) Only
on 3rd gen
SmartUPS
and Black
Back-UPS Pros

n/a

^Z Permitted
EEPROM
Values

A large string
(254 chars)
that gives the
EEPROM
permitted
values for your
model. For
details see
below.

A Front panel test Light show +
"OK" (and 2s
beep)

B Battery voltage Ranges - typi-
cal "27.87"

C Internal
temperature
(degrees C)

Ranges - typi-
cal "036.0"

Chapter 29: APC smart protocol 167

D Runtime
calibration
- runs until
battery is
below 25%
(35% for
Matrix) This
updates the ’j’
values - only
works at 100%
battery charge.
Can be aborted
with a second
"D"

! when on bat-
tery, $ on line

E Automatic self
test intervals

Default = 336
(336 hours
= 14 days)
(336=14 days,
168=7 days,
ON=power on,
OFF=never)

F Line frequency,
Hz

60.00 (50.0 in
Europe)

G Cause of
transfer

R = unaccept-
able utility
voltage rate
of change, H
= high utility
voltage, L =
low utility
voltage, T =
line voltage
notch or
spike, O =
no transfers
yet (since
turnon), S =
transfer due to
serial port U
command or
activation of
UPS test from
front panel,
NA = transfer
reason still not
available (read
again).

Chapter 29: APC smart protocol 168

K–K Shutdown with
grace period
(set with ’p’)
- need > 1.5s
between first
and second K

Matrix/3rd
gen Smar-
tUPS/Black
Back-UPS
Pros: "OK",
all others: "*"

L Input line
voltage

Ranges -
typical "118.3"
or "228.8" in
Europe

M Maximum
line voltage
received since
last M query

Ranges -
typical "118.9"
or "230.1" in
Europe

N Minimum
line voltage
received since
last N query

Ranges -
typical "118.9"
or "226.2" in
Europe

O Output voltage Ranges -
typical "118.3"
or "228.8" in
Europe

P Power load % Ranges -
typical "011.4"
depends on
what you have
plugged in.

Q Status flags Bitmapped, see
below

R Turn dumb
Only on 3rd
gen SmartUPS,
SmartUPS v/s,
BackUPS Pro

"BYE"

S Soft shutdown
after ’p’ delay,
return online
when power
returns Only
works when
UPS is on
battery

OK

U Simulate power
failure

!! when switch-
ing to battery,
then $ when
back on line

Chapter 29: APC smart protocol 169

V Old firmware
revision

"GWD" or
"IWI" The
last character
indicates
the locale
(Domestic,
International).

W Self test
(battery),
results stored
in "X"

"OK"

X Results of last
self test

"OK" - good
battery, "BT"
- failed due
to insufficient
capacity, "NG"
- failed due to
overload, "NO"
- no results
available (no
test performed
in last 5
minutes)

Y Enter smart
mode

"SM"

Z–Z Shutdown
immediately
(no delay) -
need > 1.5s
between first
and second Z

N/A

a Show protocol
version.alert
messages.valid
commands
(delimited by
periods)

"3.!$%+?=#|.^A^N^Z+-
789<@ABCDEFGKLMNOPQRSUVWXYZ’abcefgjklmnopqrsuvzy~^?"
- Link-
Level.alert-
messages.commands

b Firmware
revision

"50.9.D" - 50 =
SKU (variable
length), 9
= firmware
revision, D =
country code
(D=USA,
I=International,
A=Asia,
J=Japan,
M=Canada)

Chapter 29: APC smart protocol 170

c UPS local id UPS IDEN
(you can
program any
8 characters
here)

e Return
threshold

% battery
charge
threshold
for return
(00=00%,
01=15%,
02=25%,
03=90%)

f Battery level % Ranges -
typical "100.0"
when fully
charged
as should
normally be
the case

g Nominal
battery voltage
(not actual
voltage - see B)

"012" or "024"
or "048".

h Measure-UPS:
ambient
humidity (%)

"nnn.n" -
percentage

i Measure-UPS:
dry contacts

10 = contact 1,
20 = 2, 40 = 3,
80 = 4

j Estimated run-
time at current
load (minutes)

"0112:" (note,
it is terminated
with a colon)

k Alarm delay 0(zero) = 5 sec-
ond delay after
fail, T = 30
second delay, L
= alarm at low
battery only, N
= no alarm

l Low transfer
voltage

Default "103"
or "208" in
Europe

m Manufacturing
date

Unique within
groups of UP-
Ses (production
runs)

n Serial number Unique for each
UPS

Chapter 29: APC smart protocol 171

o Nominal
Output Voltage

The Nominal
Output Voltage
when running
on batteries.
Default "115"
or "230" in
Europe.

p Shutdown
grace delay,
seconds

Default "020"
(020/180/300/600)

q Low battery
warning,
minutes

Default "02"

r Wakeup delay
(time) - seconds

Default "000"
(000/060/180/300)

s Sensitivity "H" - highest,
"M" -
medium, "L"
- lowest, "A"
- autoadjust
(Matrix only)

u Upper transfer
voltage

Default "132"
or "253" in
Europe

t Measure-UPS:
ambient
temperature
(degrees C)

"nn.nn"

x Last battery
change

Eight
characters.
Varies typically
dd/mm/yy -
31/12/99

y Copyright
notice

"(C) APCC" -
only works if
firmware letter
(from "V") is
later than O

z Reset the
EEPROM to
factory settings
(but not
ident or batt
replacement
date) Not on
SmartUPS v/s
or BackUPS
Pro

"CLEAR"

Chapter 29: APC smart protocol 172

+ Capability
cycle

Cycle forward
through
possible values
("|" from
UPS afterward
to confirm
change). Do
not use this
unless you
know how to
program your
UPS EEPROM
or you may
damage your
UPS.

- Capability
cycle

Cycle back-
ward through
possible values
("|" from
UPS afterward
to confirm
change)Do
not use this
unless you
know how to
program your
UPS EEPROM
or you may
damage your
UPS.

@nnn Shutdown
(after delay ’p’)
with delayed
wakeup of nnn
tenths of an
hour (after ’r’
time)

Matrix/3rd gen
UPS: "OK",
others "*"

0x7f (DEL key) Abort
shutdown - use
to abort @, S,
K–K

"OK"

~ Register #1 See below
’ Register #2 See below
0 Battery

constant
Set to A0 on
SmartUPS
1000 with new
battery

Chapter 29: APC smart protocol 173

4 ??? Prints 35 on
SmartUPS
1000

5 ??? Prints EF on
SmartUPS
1000

6 ??? Prints F9 on
SmartUPS
1000

7 Dip switch
positions (if
applicable)

See below

8 Register #3 See below
9 Line quality "FF" accept-

able, "00"
unacceptable

> Number
of external
battery packs
attached

SmartCell
models: "nnn"
where nnn
is how many
external packs
are connected
Non-SmartCell
units: whatever
has been set
with >+ and >-
by the user

Matrix UPS (and
possibly Sym-
metra) specific
commands
^ Run in bypass

mode
If online,
"BYP" is
received as
bypass mode
starts If
already in
bypass, "INV"
is received
and UPS goes
online "ERR"
received if UPS
is unable to
transfer

< Number of bad
battery packs

"nnn" - count
of bad packs
connected to
the UPS

Chapter 29: APC smart protocol 174

/ Load current "nn.nn" - true
RMS load cur-
rent drawn by
UPS

\ Apparent load
power

"nnn.nn" - out-
put load as per-
centage of full
rated load in
VA.

^V Output voltage
selection
(editable)

"A" -
automatic
according to
input tap, "M"
- 208 VAC, "I"
- 240 VAC

^L Front panel
language

"E" - English,
"F" - French,
"G" - German,
"S" - Spanish,
"1" "2" "3"
"4" - ?

w Run time
conservation

"NO"
(disabled) or
"02" "05"
"08" - minutes
of runtime to
leave in battery
(UPS shuts
down "early")

29.5 Dip switch info

Bit Switch Option when bit=1
0 4 Low battery alarm

changed from 2 to 5 mins.
Autostartup disabled on
SU370ci and 400

1 3 Audible alarm delayed 30
seconds

2 2 Output transfer set to 115
VAC (from 120 VAC) or to
240 VAC (from 230 VAC)

3 1 UPS desensitized - input
voltage range expanded

4-7 - Unused at this time

Chapter 29: APC smart protocol 175

29.6 Status bits

This is probably the most important register of the UPS, which indicates the overall
UPS status. Some common things you’ll see:

08 = On line, battery OK
10 = On battery, battery OK
50 = On battery, battery low
SM = Status bit is still not available (retry reading)

Bit Hex Bit Meaning
0 0x01 1 = Runtime calibration

occurring Not reported by
Smart UPS v/s and Back-
UPS Pro

1 0x02 1 = SmartTrim Not re-
ported by 1st and 2nd gen-
eration SmartUPS models

2 0x04 1 = SmartBoost
3 0x08 1 = On line (this is the nor-

mal condition)
4 0x10 1 = On battery
5 0x20 1 = Overloaded output
6 0x40 1 = Battery low
7 0x80 1 = Replace battery

29.7 Alert messages

These single character messages are sent by the UPS any time there is an Alert condi-
tion. All other responses indicated above are sent by the UPS only in response to a query
or action command.

Character Description
! Line Fail - sent when the UPS goes on-

battery, repeated every 30 seconds until low
battery condition reached. Sometimes oc-
curs more than once in the first 30 seconds.

$ Return from line fail - UPS back on line
power, only sent if a ! has been sent.

% Low battery - Sent to indicate low battery,
but not on SmartUPS v/s or BackUPS Pro
models

+ Return from low battery - Sent when the
battery has been recharged to some level
only if a % has been sent previously

? Abnormal condition - sent for conditions
such as "shutdown due to overload" or
"shutdown due to low battery capacity".
Also occurs within 10 minutes of turnon.

Chapter 29: APC smart protocol 176

= Return from abnormal condition - Sent
when the UPS returns from an abnormal
condition where ? was sent, but not a turn-
on. Not implemented on SmartUPS v/s or
BackUPS Pro models.

* About to turn off - Sent when the UPS
is about to switch off the load. No com-
mands are processed after this character is
sent. Not implemented on SmartUPS v/s,
BackUPS Pro, or 3rd generation SmartUPS
models.

Replace battery - Sent when the UPS de-
tects that the battery needs to be replaced.
Sent every 5 hours until a new battery test
is run or the UPS is shut off. Not imple-
mented on SmartUPS v/s or BackUPS Pro
models.

& Check alarm register for fault (Measure-
UPS) - sent to signal that temp or humidity
out of set limits. Also sent when one of the
contact closures changes states. Sent every
2 minutes, stops when the alarm conditions
are reset. Only sent for alarms enabled with
I. Cause of alarm may be determined with
J. Not on SmartUPS v/s or BackUPS Pro.

| Variable change in EEPROM - Sent when-
ever any EEPROM variable is changed.
Only supported on Matrix UPS and 3rd
generation SmartUPS models.

29.8 Register 1

All bits are valid on the Matrix UPS. SmartUPS models only support bits 6 and 7.
Other models do not respond.

Bit Hex Bit Meaning
0 0x01 In wakeup mode (typically

lasts < 2s)
1 0x02 In bypass mode due to in-

ternal fault - see register 2
or 3

2 0x04 Going to bypass mode due
to command

3 0x08 In bypass mode due to
command

4 0x10 Returning from bypass
mode

5 0x20 In bypass mode due to man-
ual bypass control

Chapter 29: APC smart protocol 177

6 0x40 Ready to power load on user
command

7 0x80 Ready to power load on user
command or return of line
power

29.9 Register 2

Matrix UPS models report bits 0-5. SmartUPS models only support bits 4 and 6.
SmartUPS v/s and BackUPS Pro report bits 4, 6, 7. Unused bits are set to 0. Other
models do not respond.
Bit Meaning
0 Fan failure in electronics, UPS in bypass
1 Fan failure in isolation unit
2 Bypass supply failure
3 Output voltage select failure, UPS in

bypass
4 DC imbalance, UPS in bypass
5 Command sent to stop bypass with no bat-

tery connected - UPS still in bypass
6 Relay fault in SmartTrim or SmartBoost
7 Bad output voltage

29.10 Register 3

All bits are valid on the Matrix UPS and 3rd generation SmartUPS models. SmartUPS
v/s and BackUPS Pro models report bits 0-5. All others report 0-4. State change of bits
1,2,5,6,7 are reported asynchronously with ? and = messages.
Bit Meaning
0 Output unpowered due to shutdown by low

battery
1 Unable to transfer to battery due to

overload
2 Main relay malfunction - UPS turned off
3 In sleep mode from @ (maybe others)
4 In shutdown mode from S
5 Battery charger failure
6 Bypass relay malfunction
7 Normal operating temperature exceeded

29.11 Interpretation of the Old Firmware Revision

The Old Firmware Revision is obtained with the "V" command, which gives a typical
response such as "GWD" or "IWI", and can be interpreted as follows:

Old Firmware revision and model ID String for SmartUPS & MatrixUPS

Chapter 29: APC smart protocol 178

This is a three character string XYZ

where X == Smart-UPS or Matrix-UPS ID Code.
range 0-9 and A-P
1 == unknown
0 == Matrix 3000
5 == Matrix 5000

the rest are Smart-UPS and Smart-UPS-XL
2 == 250 3 == 400 4 == 400
6 == 600 7 == 900 8 == 1250
9 == 2000 A == 1400 B == 1000
C == 650 D == 420 E == 280
F == 450 G == 700 H == 700XL
I == 1000 J == 1000XL K == 1400
L == 1400XL M == 2200 N == 2200XL
O == 3000 P == 5000

where Y == Possible Level of Smart Features, unknown???
G == Stand Alone
T == Stand Alone

V == ???
W == Rack Mount

where Z == National Model Use Only Codes
D == Domestic 115 Volts
I == International 230 Volts
A == Asia ?? 100 Volts
J == Japan ?? 100 Volts

29.12 Interpretation of the New Firmware Revision

New Firmware revison and model ID String in NN.M.L is the format

where NN == UPS ID Code.
12 == Back-UPS Pro 650
13 == Back-UPS Pro 1000
52 == Smart-UPS 700
60 == SmartUPS 1000
72 == Smart-UPS 1400

where NN now Nn has possible meanings.
N == Class of UPS
1n == Back-UPS Pro
5n == Smart-UPS

Chapter 29: APC smart protocol 179

7n == Smart-UPS NET

n == Level of intelligence
N1 == Simple Signal, if detectable WAG(*)
N2 == Full Set of Smart Signals
N3 == Micro Subset of Smart Signals

where M == Possible Level of Smart Features, unknown???
1 == Stand Alone
8 == Rack Mount
9 == Rack Mount

where L == National Model Use Only Codes
D == Domestic 115 Volts
I == International 230 Volts
A == Asia ?? 100 Volts
J == Japan ?? 100 Volts
M == North America 208 Volts (Servers)

29.13 EEPROM Values

Upon sending a ^Z, your UPS will probably spit back approximately 254 characters
something like the following (truncated here for the example):

#uD43132135138129uM43229234239224uA43110112114108
It looks bizarre and ugly, but is easily parsed. The # is some kind of marker/ident

character. Skip it. The rest fits this form:
Command character - use this to select the value
Locale - use ’b’ to find out what yours is (the last character), ’4’ applies to all
Number of choices - ’4’ means there are 4 possibilities coming up
Choice length - ’3’ means they are all 3 chars long

Matrix-UPS models have ## between each grouping for some reason.
Here is an example broken out to be more readable:

CMD DFO RSP FSZ FVL
u D 4 3 127 130 133 136
u M 4 3 229 234 239 224
u A 4 3 108 110 112 114
u I 4 3 253 257 261 265
l D 4 3 106 103 100 097
l M 4 3 177 172 168 182
l A 4 3 092 090 088 086
l I 4 3 208 204 200 196
e 4 4 2 00 15 50 90
o D 1 3 115

Chapter 29: APC smart protocol 180

o J 1 3 100
o I 1 3 230 240 220 225
o M 1 3 208
s 4 4 1 H M L L
q 4 4 2 02 05 07 10
p 4 4 3 020 180 300 600
k 4 4 1 0 T L N
r 4 4 3 000 060 180 300
E 4 4 3 336 168 ON OFF

CMD == UPSlink Command.
u = upper transfer voltage
l = lower transfer voltage
e = return threshold
o = output voltage
s = sensitivity
p = shutdown grace delay
q = low battery warning
k = alarm delay
r = wakeup delay
E = self test interval

DFO == (4)-all-countries (D)omestic (I)nternational (A)sia (J)apan
(M) North America - servers.

RSP == Total number possible answers returned by a given CMD.
FSZ == Max. number of field positions to be filled.
FVL == Values that are returned and legal.

29.14 Programming the UPS EEPROM

There are at this time a maximum of 12 different values that can be programmed into
the UPS EEPROM. They are:

Item Command Meaning
1. c The UPS Id or name
2. x The last date the batteries

were replaced
3. u The Upper Transfer Voltage
4. l The Lower Transfer Voltage
5. e The Return Battery Charge

Percentage
6. o The Output Voltage when

on Batteries
7. s The Sensitivity to Line

Quality
8. p The Shutdown Grace Delay

Chapter 29: APC smart protocol 181

9. q The Low Battery Warning
Delay

10. k The Alarm Delay
11. r The Wakeup Delay
12. E The Automatic Self Test

Interval
The first two cases (Ident and Batt date) are somewhat special in that you tell the UPS

you want to change the value, then you supply 8 characters that are saved in the EEPROM.
The last ten item are programmed by telling the UPS that you want it to cycle to the next
permitted value.

In each case, you indicate to the UPS that you want to change the EEPROM by first
sending the appropriate query command (e.g. "c" for the UPS ID or "u" for the Upper
Transfer voltage. This command is then immediately followed by the cycle EEPROM
command or "-". In the case of the UPS Id or the battery date, you follow the cycle
command by the eight characters that you want to put in the EEPROM. In the case of the
other ten items, there is nothing more to enter.

The UPS will respond by "OK" and approximately 5 seconds later by a vertical bar
(|) to indicate that the EEPROM was changed.

29.15 Acknowledgements

The apcupsd has a rather long and tormented history. Many thanks to the guys that,
with time, contributed to the general public knowledge.

Pavel Korensky <pavelk at dator3.anet.cz>, Andre M. Hedrick <hedrick at suse.de>,
Christopher J. Reimer <reimer at doe.carleton.ca>, Kevin D. Smolkowski <kevins at trig-
ger.oslc.org>, Werner Panocha <wpanocha at t-online.de>, Steven Freed, Russell Kroll.

additions by: Kern Sibbald <apcupsd-users at lists.sourceforge.net>

http://www.exploits.org/~rkroll/contact.html
http://www.apcupsd.com

Chapter 30: Apcupsd – RPM Packaging FAQ 182

30 Apcupsd – RPM Packaging FAQ

30.1 Answers

How do I build Apcupsd for platform xxx?
The apcupsd spec file contains defines to build for several platforms: RedHat
7.x (rh7), RedHat 8.0 (rh8), RedHat 9 (rh9), Fedora Core 1 (fc1), and Whitebox
Enterprise Linux 3.0 (wb3). The package build is controlled by a define set at
the beginning of the file. These defines basically just control the dependancy
information that gets coded into the finished rpm package. So while you could
technically build a package without defining a platform, or with an incorrect
platform, and have it install and run it would not contain correct dependancy
information for the rpm database. The platform define may be edited in the
spec file directly (by default all defines are set to 0 or "not set"). For example,
to build the RedHat 7.x package find the line in the spec file which reads

%define rh7 0

and edit it to read
%define rh7 1

Alternately you may pass the define on the command line when calling rpm-
build:

rpmbuild -ba --define "build_rh7 1" apcupsd.spec
rpmbuild --rebuild --define build_rh7 1" apcupsd-x.x.x-x.src.rpm

How do I control whether usb support gets built?
By default standard serial port support will be built and the apcupsd-std pack-
age will be produced. To get the usb package and support either set the

%define usb 0

to
%define usb 1

in the spec file directly or pass it to rpmbuild on the command line:
rpmbuild -ba --define "build_rh7 1" --define "build_usb 1" apcupsd.spec

other defines are used?
The only other define is for the initdir for the daemon control script. On
RedHat systems this is set to /etc/rc.d/init.d/. You would only need to edit
this if packaging for a platform with uses a different directory.

I’m getting errors about not having permission whenI try to build the packages. Do I
need to be root? No, you do

not need to be root and, in fact, it is better practice to build rpm packages as a
non-root user. Apcupds packages are designed to be built by a regular user but
you must make a few changes on your system to do this. If you are building
on your own system then the simplest method is to add write permissions for
all to the build directory (/usr/src/redhat/). To accomplish this execute the
following command as root:

Chapter 30: Apcupsd – RPM Packaging FAQ 183

chmod -R 777 /usr/src/redhat

If you are working on a shared system where you can not use the method above
then you need to recreate the /usr/src/redhat directory tree with all of it’s
subdirectories inside your home directory. Then create a file named

.rpmmacros

in your home directory (or edit the file if it already exists) and add the following
line:

%_topdir /home/myuser/redhat

Appendix A: Credits 184

Appendix A Credits

The success of apcupsd is due to the many people that helped in development, testing
and in many other ways.

Thank all the developers that worked hard to make APCUPSDone of the best piece of
software for UPSmanagement.

A.1 Contributors

Current Code Maintainer and Project Manager:
Kern Sibbald (kern at sibbald dot com)

RPM Packager:
D. Scott Barninger (barninger at fairfieldcomputers dot com)

Super USB bug fixer:
Adam Kropelin (akropel1 at rochester dot rr dot com)

CGI and HTML fixer:
William King (wrking at dadaboom dot com)

Project Starter and Former Code Maintainer:
Andre Hedrick (andre at linux-ide.org)

Former Code Maintainer and Project Manager:
Riccardo Facchetti (riccardo at master.oasi.gpa.it)

Serial Communications:
Andre Hedrick (andre at linux-ide.org)

2.0 User’s Manual:
Eric S. Raymond (esr at thyrsus.com)

Alpha Port:
Kern Sibbald (kern at sibbald dot com)
J. Rochate (jrochate at ualg.pt) testing and machine loan

Caldera: John Pinner (john at clocksoft.com)

HP-UX Port
Carl Erhorn (Carl Erhorn at hyperion.com)
Robert K Nelson (rnelson at airflowsciences.com)

SOLARIS Port:
Carl Erhorn (Carl Erhorn at hyperion.com)

Appendix A: Credits 185

OpenBSD Port:
Devin Reade (gdr at gno.org)

NetBSD Port:
Neil Darlow (neil at darlow.co.uk)

Win32 Port:
Kern Sibbald (kern at sibbald dot com)
Paul Z. Stagner (paul.stagner at charterco.com) testing

WEB Interfaces:
Kern Sibbald (kern at sibbald dot com)
Joseph Acosta (joeja at mindspring.com)

Apcupsd Support and Knowledge Base:
Brian Schau (Brian.Schau at compaq.com)

Hard Core Coders:
Riccardo Facchetti (riccardo at master.oasi.gpa.it)
Kern Sibbald (kern at sibbald dot com)

Part Time Coders:
Jonathan H N Chin (jc254 at newton.cam.ac.uk)
Andre Hedrick (andre at linux-ide.org)
Brian Schau (Brian.Schau at compaq.com)
Carl Erhorn (Carl Erhorn at hyperion.com)

Distribution Maintainers:
Alpha: Kern Sibbald (kern at sibbald dot com) temp
Debian: Leon Breedt (ljb at debian.org)
FreeBSD/BSDi: Jeff Palmer (scorpio at drkshdw.org)
NetBSD: Neil Darlow (neil at darlow.co.uk)
HP-UX: Carl Erhorn (Carl Erhorn at hyperion.com), Robert K Nelson (rnelson
at airflowsciences.com)
OpenBSD: Devin Reade (gdr at gno.org)
RedHat: Kern Sibbald (kern at sibbald dot com)
Slackware: Devin Reade (gdr at gno.org)
Sparc Solaris: Carl Erhorn (Carl Erhorn at hyperion.com)
SUSE: Riccardo Facchetti (riccardo at master.oasi.gpa.it)
Win32: Kern Sibbald (kern at sibbald dot com)

Project Discussions:
APCUPSD Mailing List

Thanks to American Power Conversion (APC) who helped in giving technical informa-
tion on their UPSes.

A special thanks to APC who gave me (Riccardo) a Smart UPS1400 INET when my
old Back UPS v/s 650’s battery died. Thank you guys, your help has been invaluable.

wb_mailto:apcupsd-users@lists.sourceforge.net

Appendix A: Credits 186

Thanks to all the users that send bug reports and suggestions:we need your help.
Thanks to every one I forgot here. If you feel Ihave forgot your name, please don’t

hesitate to tell me.
Miquel van Smoorenburg, The Doctor What, Pavel Korensky, and Russell Kroll <rkroll

at exploits.org> for the CGI programs. Jonathan Benson <jbenson at technologist.com> for
adapting the upsstatus.cgi program to work with apcupsd

The gd 1.2 Image Library used in our CGI programs is copyright 1994, 1995, Quest
Protein Database Center, Cold Spring Harbor Labs. Permission granted to copy and dis-
tribute this work provided that this notice remains intact. Credit for the library must be
given to the Quest Protein Database Center, Cold Spring Harbor Labs, in all derived works.
This does not affect your ownership of the derived work itself, and the intent is to assure
proper credit for Quest, not to interfere with your use of gd.

gd 1.2 was written by Thomas Boutell and is currently distributed by boutell.com, Inc.
Parts of the VNC project by ATT (cool code) were used as templates for our Win32

code, see: http://www.uk.research.att.com/vnc

A.2 Disclaimer: NO WARRANTY

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICA-
BLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITH-
OUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCI-
DENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR IN-
ABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH
ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

http://www.uk.research.att.com/vnc

Appendix B: Kernel Config 187

Appendix B Kernel Config

A typical USB section of a .config file might be:

#
USB support
#
CONFIG_USB=m
CONFIG_USB_DEBUG=y

#
Miscellaneous USB options
#
CONFIG_USB_DEVICEFS=y
CONFIG_USB_BANDWIDTH is not set
CONFIG_USB_DYNAMIC_MINORS is not set

#
USB Host Controller Drivers
#
CONFIG_USB_EHCI_HCD is not set
CONFIG_USB_OHCI_HCD is not set
CONFIG_USB_UHCI_HCD=m

#
USB Device Class drivers
#
CONFIG_USB_BLUETOOTH_TTY is not set
CONFIG_USB_ACM is not set
CONFIG_USB_PRINTER is not set
CONFIG_USB_STORAGE=m
CONFIG_USB_STORAGE_DEBUG is not set
CONFIG_USB_STORAGE_DATAFAB is not set
CONFIG_USB_STORAGE_FREECOM is not set
CONFIG_USB_STORAGE_ISD200 is not set
CONFIG_USB_STORAGE_DPCM is not set
CONFIG_USB_STORAGE_HP8200e is not set
CONFIG_USB_STORAGE_SDDR09 is not set
CONFIG_USB_STORAGE_SDDR55 is not set
CONFIG_USB_STORAGE_JUMPSHOT is not set

#
USB Human Interface Devices (HID)
#
CONFIG_USB_HID=m
CONFIG_USB_HIDINPUT=y
CONFIG_HID_FF is not set

Appendix B: Kernel Config 188

CONFIG_USB_HIDDEV=y

#
USB HID Boot Protocol drivers
#
CONFIG_USB_KBD is not set
CONFIG_USB_MOUSE is not set
CONFIG_USB_AIPTEK is not set
CONFIG_USB_WACOM is not set
CONFIG_USB_KBTAB is not set
CONFIG_USB_POWERMATE is not set
CONFIG_USB_MTOUCH is not set
CONFIG_USB_XPAD is not set
CONFIG_USB_ATI_REMOTE is not set

#
USB Imaging devices
#
CONFIG_USB_MDC800 is not set
CONFIG_USB_MICROTEK is not set
CONFIG_USB_HPUSBSCSI is not set

#
USB Multimedia devices
#
CONFIG_USB_DABUSB is not set

#
Video4Linux support is needed for USB Multimedia device support
#

#
USB Network adaptors
#
CONFIG_USB_CATC is not set
CONFIG_USB_KAWETH is not set
CONFIG_USB_PEGASUS is not set
CONFIG_USB_RTL8150 is not set
CONFIG_USB_USBNET is not set

#
USB port drivers
#
CONFIG_USB_USS720 is not set

#
USB Serial Converter support

Appendix B: Kernel Config 189

#
CONFIG_USB_SERIAL is not set

#
USB Miscellaneous drivers
#
CONFIG_USB_EMI62 is not set
CONFIG_USB_EMI26 is not set
CONFIG_USB_TIGL is not set
CONFIG_USB_AUERSWALD is not set
CONFIG_USB_RIO500 is not set
CONFIG_USB_LEGOTOWER is not set
CONFIG_USB_LCD is not set
CONFIG_USB_LED is not set
CONFIG_USB_CYTHERM is not set
CONFIG_USB_TEST is not set

#
USB Gadget Support
#
CONFIG_USB_GADGET is not set

Interpretation of /proc/usb info on 2.4 kernels:

/proc/bus/usb filesystem output
===============================
(version 2002.03.18)

The /proc filesystem for USB devices provides /proc/bus/usb/drivers
and /proc/bus/usb/devices, as well as /proc/bus/usb/BBB/DDD files.

NOTE: If /proc/bus/usb appears empty, and a host controller
driver has been linked, then you need to mount the
filesystem. Issue the command (as root):

mount -t usbfs none /proc/bus/usb

An alternative and more permanent method would be to add

none /proc/bus/usb usbfs defaults 0 0

to /etc/fstab. This will mount usbfs at each reboot.
You can then issue ‘cat /proc/bus/usb/devices‘ to extract
USB device information, and user mode drivers can use usbfs
to interact with USB devices.

Appendix B: Kernel Config 190

There are a number of mount options supported by usbfs.
Consult the source code (linux/drivers/usb/inode.c) for
information about those options.

NOTE: The filesystem has been renamed from "usbdevfs" to
"usbfs", to reduce confusion with "devfs". You may
still see references to the older "usbdevfs" name.

For more information on mounting the usbfs file system, see the
"USB Device Filesystem" section of the USB Guide. The latest copy
of the USB Guide can be found at http://www.linux-usb.org/

THE /proc/bus/usb/BBB/DDD FILES:

Each connected USB device has one file. The BBB indicates the bus
number. The DDD indicates the device address on that bus. Both
of these numbers are assigned sequentially, and can be reused, so
you can’t rely on them for stable access to devices. For example,
it’s relatively common for devices to re-enumerate while they are
still connected (perhaps someone jostled their power supply, hub,
or USB cable), so a device might be 002/027 when you first connect
it and 002/048 sometime later.

These files can be read as binary data. The binary data consists
of first the device descriptor, then the descriptors for each
configuration of the device. That information is also shown in
text form by the /proc/bus/usb/devices file, described later.

These files may also be used to write user-level drivers for the USB
devices. You would open the /proc/bus/usb/BBB/DDD file read/write,
read its descriptors to make sure it’s the device you expect, and then
bind to an interface (or perhaps several) using an ioctl call. You
would issue more ioctls to the device to communicate to it using
control, bulk, or other kinds of USB transfers. The IOCTLs are
listed in the linux/usbdevice_fs.h file, and at this writing the
source code (linux/drivers/usb/devio.c) is the primary reference
for how to access devices through those files.

Note that since by default these BBB/DDD files are writable only by
root, only root can write such user mode drivers. You can selectively
grant read/write permissions to other users by using "chmod". Also,
usbfs mount options such as "devmode=0666" may be helpful.

Appendix B: Kernel Config 191

THE /proc/bus/usb/drivers FILE:

Each of the USB device drivers linked into your kernel (statically,
or dynamically using "modprobe") is listed in the "drivers" file.
Here’s an example from one system:

usbdevfs
hub

0- 15: usblp
usbnet
serial
usb-storage
pegasus

If you see this file, "usbdevfs" and "hub" will always be listed,
since those are part of the "usbcore" framework.

Drivers that use the USB major number (180) to provide character devices
will include a range of minor numbers, as shown above for the "usblp"
(actually "printer.o") module. USB device drivers can of course use any
major number, but it’s easy to use the USB range since there’s explicit
support for subdividing it in the USB device driver framework.

THE /proc/bus/usb/devices FILE:

In /proc/bus/usb/devices, each device’s output has multiple
lines of ASCII output.
I made it ASCII instead of binary on purpose, so that someone
can obtain some useful data from it without the use of an
auxiliary program. However, with an auxiliary program, the numbers
in the first 4 columns of each "T:" line (topology info:
Lev, Prnt, Port, Cnt) can be used to build a USB topology diagram.

Each line is tagged with a one-character ID for that line:

T = Topology (etc.)
B = Bandwidth (applies only to USB host controllers, which are

virtualized as root hubs)
D = Device descriptor info.
P = Product ID info. (from Device descriptor, but they won’t fit

together on one line)
S = String descriptors.
C = Configuration descriptor info. (* = active configuration)
I = Interface descriptor info.
E = Endpoint descriptor info.

Appendix B: Kernel Config 192

===

/proc/bus/usb/devices output format:

Legend:
d = decimal number (may have leading spaces or 0’s)
x = hexadecimal number (may have leading spaces or 0’s)
s = string

Topology info:

T: Bus=dd Lev=dd Prnt=dd Port=dd Cnt=dd Dev#=ddd Spd=ddd MxCh=dd
| | | | | | | | |__MaxChildren
| | | | | | | |__Device Speed in Mbps
| | | | | | |__DeviceNumber
| | | | | |__Count of devices at this level
| | | | |__Connector/Port on Parent for this device
| | | |__Parent DeviceNumber
| | |__Level in topology for this bus
| |__Bus number
|__Topology info tag

Speed may be:
1.5 Mbit/s for low speed USB
12 Mbit/s for full speed USB
480 Mbit/s for high speed USB (added for USB 2.0)

Bandwidth info:
B: Alloc=ddd/ddd us (xx%), #Int=ddd, #Iso=ddd
| | | |__Number of isochronous requests
| | |__Number of interrupt requests
| |__Total Bandwidth allocated to this bus
|__Bandwidth info tag

Bandwidth allocation is an approximation of how much of one frame
(millisecond) is in use. It reflects only periodic transfers, which
are the only transfers that reserve bandwidth. Control and bulk
transfers use all other bandwidth, including reserved bandwidth that
is not used for transfers (such as for short packets).

The percentage is how much of the "reserved" bandwidth is scheduled by
those transfers. For a low or full speed bus (loosely, "USB 1.1"),
90% of the bus bandwidth is reserved. For a high speed bus (loosely,
"USB 2.0") 80% is reserved.

Appendix B: Kernel Config 193

Device descriptor info & Product ID info:

D: Ver=x.xx Cls=xx(s) Sub=xx Prot=xx MxPS=dd #Cfgs=dd
P: Vendor=xxxx ProdID=xxxx Rev=xx.xx

where
D: Ver=x.xx Cls=xx(sssss) Sub=xx Prot=xx MxPS=dd #Cfgs=dd
| | | | | | |__NumberConfigurations
| | | | | |__MaxPacketSize of Default Endpoint
| | | | |__DeviceProtocol
| | | |__DeviceSubClass
| | |__DeviceClass
| |__Device USB version
|__Device info tag #1

where
P: Vendor=xxxx ProdID=xxxx Rev=xx.xx
| | | |__Product revision number
| | |__Product ID code
| |__Vendor ID code
|__Device info tag #2

String descriptor info:

S: Manufacturer=ssss
| |__Manufacturer of this device as read from the device.
| For USB host controller drivers (virtual root hubs) this may
| be omitted, or (for newer drivers) will identify the kernel
| version and the driver which provides this hub emulation.
|__String info tag

S: Product=ssss
| |__Product description of this device as read from the device.
| For older USB host controller drivers (virtual root hubs) this
| indicates the driver; for newer ones, it’s a product (and vendor)
| description that often comes from the kernel’s PCI ID database.
|__String info tag

S: SerialNumber=ssss
| |__Serial Number of this device as read from the device.
| For USB host controller drivers (virtual root hubs) this is
| some unique ID, normally a bus ID (address or slot name) that
| can’t be shared with any other device.
|__String info tag

Appendix B: Kernel Config 194

Configuration descriptor info:

C:* #Ifs=dd Cfg#=dd Atr=xx MPwr=dddmA
| | | | | |__MaxPower in mA
| | | | |__Attributes
| | | |__ConfiguratioNumber
| | |__NumberOfInterfaces
| |__ "*" indicates the active configuration (others are " ")
|__Config info tag

USB devices may have multiple configurations, each of which act
rather differently. For example, a bus-powered configuration
might be much less capable than one that is self-powered. Only
one device configuration can be active at a time; most devices
have only one configuration.

Each configuration consists of one or more interfaces. Each
interface serves a distinct "function", which is typically bound
to a different USB device driver. One common example is a USB
speaker with an audio interface for playback, and a HID interface
for use with software volume control.

Interface descriptor info (can be multiple per Config):

I: If#=dd Alt=dd #EPs=dd Cls=xx(sssss) Sub=xx Prot=xx Driver=ssss
| | | | | | | |__Driver name
| | | | | | | or "(none)"
| | | | | | |__InterfaceProtocol
| | | | | |__InterfaceSubClass
| | | | |__InterfaceClass
| | | |__NumberOfEndpoints
| | |__AlternateSettingNumber
| |__InterfaceNumber
|__Interface info tag

A given interface may have one or more "alternate" settings.
For example, default settings may not use more than a small
amount of periodic bandwidth. To use significant fractions
of bus bandwidth, drivers must select a non-default altsetting.

Only one setting for an interface may be active at a time, and
only one driver may bind to an interface at a time. Most devices
have only one alternate setting per interface.

Appendix B: Kernel Config 195

Endpoint descriptor info (can be multiple per Interface):

E: Ad=xx(s) Atr=xx(ssss) MxPS=dddd Ivl=dddms
| | | | |__Interval (max) between transfers
| | | |__EndpointMaxPacketSize
| | |__Attributes(EndpointType)
| |__EndpointAddress(I=In,O=Out)
|__Endpoint info tag

The interval is nonzero for all periodic (interrupt or isochronous)
endpoints. For high speed endpoints the transfer interval may be
measured in microseconds rather than milliseconds.

For high speed periodic endpoints, the "MaxPacketSize" reflects
the per-microframe data transfer size. For "high bandwidth"
endpoints, that can reflect two or three packets (for up to
3KBytes every 125 usec) per endpoint.

With the Linux-USB stack, periodic bandwidth reservations use the
transfer intervals and sizes provided by URBs, which can be less
than those found in endpoint descriptor.

===

If a user or script is interested only in Topology info, for
example, use something like "grep ^T: /proc/bus/usb/devices"
for only the Topology lines. A command like
"grep -i ^[tdp]: /proc/bus/usb/devices" can be used to list
only the lines that begin with the characters in square brackets,
where the valid characters are TDPCIE. With a slightly more able
script, it can display any selected lines (for example, only T, D,
and P lines) and change their output format. (The "procusb"
Perl script is the beginning of this idea. It will list only
selected lines [selected from TBDPSCIE] or "All" lines from
/proc/bus/usb/devices.)

The Topology lines can be used to generate a graphic/pictorial
of the USB devices on a system’s root hub. (See more below
on how to do this.)

The Interface lines can be used to determine what driver is
being used for each device.

The Configuration lines could be used to list maximum power

Appendix B: Kernel Config 196

(in milliamps) that a system’s USB devices are using.
For example, "grep ^C: /proc/bus/usb/devices".

Here’s an example, from a system which has a UHCI root hub,
an external hub connected to the root hub, and a mouse and
a serial converter connected to the external hub.

T: Bus=00 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=12 MxCh= 2
B: Alloc= 28/900 us (3%), #Int= 2, #Iso= 0
D: Ver= 1.00 Cls=09(hub) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
P: Vendor=0000 ProdID=0000 Rev= 0.00
S: Product=USB UHCI Root Hub
S: SerialNumber=dce0
C:* #Ifs= 1 Cfg#= 1 Atr=40 MxPwr= 0mA
I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub) Sub=00 Prot=00 Driver=hub
E: Ad=81(I) Atr=03(Int.) MxPS= 8 Ivl=255ms
T: Bus=00 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 2 Spd=12 MxCh= 4
D: Ver= 1.00 Cls=09(hub) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
P: Vendor=0451 ProdID=1446 Rev= 1.00
C:* #Ifs= 1 Cfg#= 1 Atr=e0 MxPwr=100mA
I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub) Sub=00 Prot=00 Driver=hub
E: Ad=81(I) Atr=03(Int.) MxPS= 1 Ivl=255ms
T: Bus=00 Lev=02 Prnt=02 Port=00 Cnt=01 Dev#= 3 Spd=1.5 MxCh= 0
D: Ver= 1.00 Cls=00(>ifc) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
P: Vendor=04b4 ProdID=0001 Rev= 0.00
C:* #Ifs= 1 Cfg#= 1 Atr=80 MxPwr=100mA
I: If#= 0 Alt= 0 #EPs= 1 Cls=03(HID) Sub=01 Prot=02 Driver=mouse
E: Ad=81(I) Atr=03(Int.) MxPS= 3 Ivl= 10ms
T: Bus=00 Lev=02 Prnt=02 Port=02 Cnt=02 Dev#= 4 Spd=12 MxCh= 0
D: Ver= 1.00 Cls=00(>ifc) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
P: Vendor=0565 ProdID=0001 Rev= 1.08
S: Manufacturer=Peracom Networks, Inc.
S: Product=Peracom USB to Serial Converter
C:* #Ifs= 1 Cfg#= 1 Atr=a0 MxPwr=100mA
I: If#= 0 Alt= 0 #EPs= 3 Cls=00(>ifc) Sub=00 Prot=00 Driver=serial
E: Ad=81(I) Atr=02(Bulk) MxPS= 64 Ivl= 16ms
E: Ad=01(O) Atr=02(Bulk) MxPS= 16 Ivl= 16ms
E: Ad=82(I) Atr=03(Int.) MxPS= 8 Ivl= 8ms

Selecting only the "T:" and "I:" lines from this (for example, by using
"procusb ti"), we have:

T: Bus=00 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=12 MxCh= 2
T: Bus=00 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 2 Spd=12 MxCh= 4
I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub) Sub=00 Prot=00 Driver=hub

Appendix B: Kernel Config 197

T: Bus=00 Lev=02 Prnt=02 Port=00 Cnt=01 Dev#= 3 Spd=1.5 MxCh= 0
I: If#= 0 Alt= 0 #EPs= 1 Cls=03(HID) Sub=01 Prot=02 Driver=mouse
T: Bus=00 Lev=02 Prnt=02 Port=02 Cnt=02 Dev#= 4 Spd=12 MxCh= 0
I: If#= 0 Alt= 0 #EPs= 3 Cls=00(>ifc) Sub=00 Prot=00 Driver=serial

Physically this looks like (or could be converted to):

+------------------+
| PC/root_hub (12)| Dev# = 1
+------------------+ (nn) is Mbps.

Level 0 | CN.0 | CN.1 | [CN = connector/port #]
+------------------+

/
/

+-----------------------+
Level 1 | Dev#2: 4-port hub (12)|

+-----------------------+
|CN.0 |CN.1 |CN.2 |CN.3 |
+-----------------------+

\ ____________________
_____ \

\ \
+--------------------+ +--------------------+

Level 2 | Dev# 3: mouse (1.5)| | Dev# 4: serial (12)|
+--------------------+ +--------------------+

Or, in a more tree-like structure (ports [Connectors] without
connections could be omitted):

PC: Dev# 1, root hub, 2 ports, 12 Mbps
|_ CN.0: Dev# 2, hub, 4 ports, 12 Mbps

|_ CN.0: Dev #3, mouse, 1.5 Mbps
|_ CN.1:
|_ CN.2: Dev #4, serial, 12 Mbps
|_ CN.3:

|_ CN.1:

END

Interpretation of /proc/bus/usb info on 2.6 kernels:

/proc/bus/usb filesystem output
===============================

Appendix B: Kernel Config 198

(version 2003.05.30)

The usbfs filesystem for USB devices is traditionally mounted at
/proc/bus/usb. It provides the /proc/bus/usb/devices file, as well as
the /proc/bus/usb/BBB/DDD files.

NOTE: If /proc/bus/usb appears empty, and a host controller
driver has been linked, then you need to mount the
filesystem. Issue the command (as root):

mount -t usbfs none /proc/bus/usb

An alternative and more permanent method would be to add

none /proc/bus/usb usbfs defaults 0 0

to /etc/fstab. This will mount usbfs at each reboot.
You can then issue ‘cat /proc/bus/usb/devices‘ to extract
USB device information, and user mode drivers can use usbfs
to interact with USB devices.

There are a number of mount options supported by usbfs.
Consult the source code (linux/drivers/usb/core/inode.c) for
information about those options.

NOTE: The filesystem has been renamed from "usbdevfs" to
"usbfs", to reduce confusion with "devfs". You may
still see references to the older "usbdevfs" name.

For more information on mounting the usbfs file system, see the
"USB Device Filesystem" section of the USB Guide. The latest copy
of the USB Guide can be found at http://www.linux-usb.org/

THE /proc/bus/usb/BBB/DDD FILES:

Each connected USB device has one file. The BBB indicates the bus
number. The DDD indicates the device address on that bus. Both
of these numbers are assigned sequentially, and can be reused, so
you can’t rely on them for stable access to devices. For example,
it’s relatively common for devices to re-enumerate while they are
still connected (perhaps someone jostled their power supply, hub,
or USB cable), so a device might be 002/027 when you first connect
it and 002/048 sometime later.

Appendix B: Kernel Config 199

These files can be read as binary data. The binary data consists
of first the device descriptor, then the descriptors for each
configuration of the device. That information is also shown in
text form by the /proc/bus/usb/devices file, described later.

These files may also be used to write user-level drivers for the USB
devices. You would open the /proc/bus/usb/BBB/DDD file read/write,
read its descriptors to make sure it’s the device you expect, and then
bind to an interface (or perhaps several) using an ioctl call. You
would issue more ioctls to the device to communicate to it using
control, bulk, or other kinds of USB transfers. The IOCTLs are
listed in the linux/usbdevice_fs.h file, and at this writing the
source code (linux/drivers/usb/devio.c) is the primary reference
for how to access devices through those files.

Note that since by default these BBB/DDD files are writable only by
root, only root can write such user mode drivers. You can selectively
grant read/write permissions to other users by using "chmod". Also,
usbfs mount options such as "devmode=0666" may be helpful.

THE /proc/bus/usb/devices FILE:

In /proc/bus/usb/devices, each device’s output has multiple
lines of ASCII output.
I made it ASCII instead of binary on purpose, so that someone
can obtain some useful data from it without the use of an
auxiliary program. However, with an auxiliary program, the numbers
in the first 4 columns of each "T:" line (topology info:
Lev, Prnt, Port, Cnt) can be used to build a USB topology diagram.

Each line is tagged with a one-character ID for that line:

T = Topology (etc.)
B = Bandwidth (applies only to USB host controllers, which are

virtualized as root hubs)
D = Device descriptor info.
P = Product ID info. (from Device descriptor, but they won’t fit

together on one line)
S = String descriptors.
C = Configuration descriptor info. (* = active configuration)
I = Interface descriptor info.
E = Endpoint descriptor info.

===

Appendix B: Kernel Config 200

/proc/bus/usb/devices output format:

Legend:
d = decimal number (may have leading spaces or 0’s)
x = hexadecimal number (may have leading spaces or 0’s)
s = string

Topology info:

T: Bus=dd Lev=dd Prnt=dd Port=dd Cnt=dd Dev#=ddd Spd=ddd MxCh=dd
| | | | | | | | |__MaxChildren
| | | | | | | |__Device Speed in Mbps
| | | | | | |__DeviceNumber
| | | | | |__Count of devices at this level
| | | | |__Connector/Port on Parent for this device
| | | |__Parent DeviceNumber
| | |__Level in topology for this bus
| |__Bus number
|__Topology info tag

Speed may be:
1.5 Mbit/s for low speed USB
12 Mbit/s for full speed USB
480 Mbit/s for high speed USB (added for USB 2.0)

Bandwidth info:
B: Alloc=ddd/ddd us (xx%), #Int=ddd, #Iso=ddd
| | | |__Number of isochronous requests
| | |__Number of interrupt requests
| |__Total Bandwidth allocated to this bus
|__Bandwidth info tag

Bandwidth allocation is an approximation of how much of one frame
(millisecond) is in use. It reflects only periodic transfers, which
are the only transfers that reserve bandwidth. Control and bulk
transfers use all other bandwidth, including reserved bandwidth that
is not used for transfers (such as for short packets).

The percentage is how much of the "reserved" bandwidth is scheduled by
those transfers. For a low or full speed bus (loosely, "USB 1.1"),
90% of the bus bandwidth is reserved. For a high speed bus (loosely,
"USB 2.0") 80% is reserved.

Device descriptor info & Product ID info:

Appendix B: Kernel Config 201

D: Ver=x.xx Cls=xx(s) Sub=xx Prot=xx MxPS=dd #Cfgs=dd
P: Vendor=xxxx ProdID=xxxx Rev=xx.xx

where
D: Ver=x.xx Cls=xx(sssss) Sub=xx Prot=xx MxPS=dd #Cfgs=dd
| | | | | | |__NumberConfigurations
| | | | | |__MaxPacketSize of Default Endpoint
| | | | |__DeviceProtocol
| | | |__DeviceSubClass
| | |__DeviceClass
| |__Device USB version
|__Device info tag #1

where
P: Vendor=xxxx ProdID=xxxx Rev=xx.xx
| | | |__Product revision number
| | |__Product ID code
| |__Vendor ID code
|__Device info tag #2

String descriptor info:

S: Manufacturer=ssss
| |__Manufacturer of this device as read from the device.
| For USB host controller drivers (virtual root hubs) this may
| be omitted, or (for newer drivers) will identify the kernel
| version and the driver which provides this hub emulation.
|__String info tag

S: Product=ssss
| |__Product description of this device as read from the device.
| For older USB host controller drivers (virtual root hubs) this
| indicates the driver; for newer ones, it’s a product (and vendor)
| description that often comes from the kernel’s PCI ID database.
|__String info tag

S: SerialNumber=ssss
| |__Serial Number of this device as read from the device.
| For USB host controller drivers (virtual root hubs) this is
| some unique ID, normally a bus ID (address or slot name) that
| can’t be shared with any other device.
|__String info tag

Appendix B: Kernel Config 202

Configuration descriptor info:

C:* #Ifs=dd Cfg#=dd Atr=xx MPwr=dddmA
| | | | | |__MaxPower in mA
| | | | |__Attributes
| | | |__ConfiguratioNumber
| | |__NumberOfInterfaces
| |__ "*" indicates the active configuration (others are " ")
|__Config info tag

USB devices may have multiple configurations, each of which act
rather differently. For example, a bus-powered configuration
might be much less capable than one that is self-powered. Only
one device configuration can be active at a time; most devices
have only one configuration.

Each configuration consists of one or more interfaces. Each
interface serves a distinct "function", which is typically bound
to a different USB device driver. One common example is a USB
speaker with an audio interface for playback, and a HID interface
for use with software volume control.

Interface descriptor info (can be multiple per Config):

I: If#=dd Alt=dd #EPs=dd Cls=xx(sssss) Sub=xx Prot=xx Driver=ssss
| | | | | | | |__Driver name
| | | | | | | or "(none)"
| | | | | | |__InterfaceProtocol
| | | | | |__InterfaceSubClass
| | | | |__InterfaceClass
| | | |__NumberOfEndpoints
| | |__AlternateSettingNumber
| |__InterfaceNumber
|__Interface info tag

A given interface may have one or more "alternate" settings.
For example, default settings may not use more than a small
amount of periodic bandwidth. To use significant fractions
of bus bandwidth, drivers must select a non-default altsetting.

Only one setting for an interface may be active at a time, and
only one driver may bind to an interface at a time. Most devices
have only one alternate setting per interface.

Endpoint descriptor info (can be multiple per Interface):

Appendix B: Kernel Config 203

E: Ad=xx(s) Atr=xx(ssss) MxPS=dddd Ivl=dddss
| | | | |__Interval (max) between transfers
| | | |__EndpointMaxPacketSize
| | |__Attributes(EndpointType)
| |__EndpointAddress(I=In,O=Out)
|__Endpoint info tag

The interval is nonzero for all periodic (interrupt or isochronous)
endpoints. For high speed endpoints the transfer interval may be
measured in microseconds rather than milliseconds.

For high speed periodic endpoints, the "MaxPacketSize" reflects
the per-microframe data transfer size. For "high bandwidth"
endpoints, that can reflect two or three packets (for up to
3KBytes every 125 usec) per endpoint.

With the Linux-USB stack, periodic bandwidth reservations use the
transfer intervals and sizes provided by URBs, which can be less
than those found in endpoint descriptor.

===

If a user or script is interested only in Topology info, for
example, use something like "grep ^T: /proc/bus/usb/devices"
for only the Topology lines. A command like
"grep -i ^[tdp]: /proc/bus/usb/devices" can be used to list
only the lines that begin with the characters in square brackets,
where the valid characters are TDPCIE. With a slightly more able
script, it can display any selected lines (for example, only T, D,
and P lines) and change their output format. (The "procusb"
Perl script is the beginning of this idea. It will list only
selected lines [selected from TBDPSCIE] or "All" lines from
/proc/bus/usb/devices.)

The Topology lines can be used to generate a graphic/pictorial
of the USB devices on a system’s root hub. (See more below
on how to do this.)

The Interface lines can be used to determine what driver is
being used for each device.

The Configuration lines could be used to list maximum power
(in milliamps) that a system’s USB devices are using.
For example, "grep ^C: /proc/bus/usb/devices".

Appendix B: Kernel Config 204

Here’s an example, from a system which has a UHCI root hub,
an external hub connected to the root hub, and a mouse and
a serial converter connected to the external hub.

T: Bus=00 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=12 MxCh= 2
B: Alloc= 28/900 us (3%), #Int= 2, #Iso= 0
D: Ver= 1.00 Cls=09(hub) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
P: Vendor=0000 ProdID=0000 Rev= 0.00
S: Product=USB UHCI Root Hub
S: SerialNumber=dce0
C:* #Ifs= 1 Cfg#= 1 Atr=40 MxPwr= 0mA
I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub) Sub=00 Prot=00 Driver=hub
E: Ad=81(I) Atr=03(Int.) MxPS= 8 Ivl=255ms
T: Bus=00 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 2 Spd=12 MxCh= 4
D: Ver= 1.00 Cls=09(hub) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
P: Vendor=0451 ProdID=1446 Rev= 1.00
C:* #Ifs= 1 Cfg#= 1 Atr=e0 MxPwr=100mA
I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub) Sub=00 Prot=00 Driver=hub
E: Ad=81(I) Atr=03(Int.) MxPS= 1 Ivl=255ms
T: Bus=00 Lev=02 Prnt=02 Port=00 Cnt=01 Dev#= 3 Spd=1.5 MxCh= 0
D: Ver= 1.00 Cls=00(>ifc) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
P: Vendor=04b4 ProdID=0001 Rev= 0.00
C:* #Ifs= 1 Cfg#= 1 Atr=80 MxPwr=100mA
I: If#= 0 Alt= 0 #EPs= 1 Cls=03(HID) Sub=01 Prot=02 Driver=mouse
E: Ad=81(I) Atr=03(Int.) MxPS= 3 Ivl= 10ms
T: Bus=00 Lev=02 Prnt=02 Port=02 Cnt=02 Dev#= 4 Spd=12 MxCh= 0
D: Ver= 1.00 Cls=00(>ifc) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
P: Vendor=0565 ProdID=0001 Rev= 1.08
S: Manufacturer=Peracom Networks, Inc.
S: Product=Peracom USB to Serial Converter
C:* #Ifs= 1 Cfg#= 1 Atr=a0 MxPwr=100mA
I: If#= 0 Alt= 0 #EPs= 3 Cls=00(>ifc) Sub=00 Prot=00 Driver=serial
E: Ad=81(I) Atr=02(Bulk) MxPS= 64 Ivl= 16ms
E: Ad=01(O) Atr=02(Bulk) MxPS= 16 Ivl= 16ms
E: Ad=82(I) Atr=03(Int.) MxPS= 8 Ivl= 8ms

Selecting only the "T:" and "I:" lines from this (for example, by using
"procusb ti"), we have:

T: Bus=00 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=12 MxCh= 2
T: Bus=00 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 2 Spd=12 MxCh= 4
I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub) Sub=00 Prot=00 Driver=hub
T: Bus=00 Lev=02 Prnt=02 Port=00 Cnt=01 Dev#= 3 Spd=1.5 MxCh= 0
I: If#= 0 Alt= 0 #EPs= 1 Cls=03(HID) Sub=01 Prot=02 Driver=mouse

Appendix B: Kernel Config 205

T: Bus=00 Lev=02 Prnt=02 Port=02 Cnt=02 Dev#= 4 Spd=12 MxCh= 0
I: If#= 0 Alt= 0 #EPs= 3 Cls=00(>ifc) Sub=00 Prot=00 Driver=serial

Physically this looks like (or could be converted to):

+------------------+
| PC/root_hub (12)| Dev# = 1
+------------------+ (nn) is Mbps.

Level 0 | CN.0 | CN.1 | [CN = connector/port #]
+------------------+

/
/

+-----------------------+
Level 1 | Dev#2: 4-port hub (12)|

+-----------------------+
|CN.0 |CN.1 |CN.2 |CN.3 |
+-----------------------+

\ ____________________
_____ \

\ \
+--------------------+ +--------------------+

Level 2 | Dev# 3: mouse (1.5)| | Dev# 4: serial (12)|
+--------------------+ +--------------------+

Or, in a more tree-like structure (ports [Connectors] without
connections could be omitted):

PC: Dev# 1, root hub, 2 ports, 12 Mbps
|_ CN.0: Dev# 2, hub, 4 ports, 12 Mbps

|_ CN.0: Dev #3, mouse, 1.5 Mbps
|_ CN.1:
|_ CN.2: Dev #4, serial, 12 Mbps
|_ CN.3:

|_ CN.1:

END

Index 206

Index

A
Advanced . 81
After Installation . 35
Alpha . 28
apcaccess . 55
apcaccess eeprom . 57
apcaccess status . 55
apcaccess Test . 44
apctest . 50, 137, 138, 139
apctest setting eeprom . 67

B
BackOffice ES . 127
BackUPS ES . 127
BackUPS Office, cables . 122
Batteries . 70, 75
Bugs . 81
Building . 20
Building, Windows. 113

C
Cables 117, 123, 124, 126, 127, 130, 132, 133
Cables, BackUPS CS . 118
Cables, BackUPS Office . 122
Cables, dumb . 119
Cables, Smart Custom . 117
Cables, Smart Signalling . 118
Cables, Voltage Signalling 122
CGI programs . 58
CGI, multimon . 61
CGI, upsfstatus . 63
CGI, upssstats . 63
CGI, upsstats . 62
CGI, working example . 64
Checking Conf file . 35
Checking running . 36
Choosing a Configuration Type 9
Client Test program . 64
Communications Testing . 47
compiler options . 27
config, Kernel . 187
Configuration Type . 9
Configuration, Directives 86, 144
Configuration, dumb . 39
Configuration, Examples . 38
Configuration, Master . 39
Configuration, NIS slave conf 41
Configuration, Slave . 40
Configuration, SmartUPS . 38
Configuration, USB . 38
configure options . 23
Configuring, eeprom . 66

Customizing event handling 82

D
DATA Logging . 143

Debian . 28

Developers Notes . 100

Directives . 86, 144

Directives EEPROM . 151

Directives Logging . 148

Directives Sharing . 149

Directives, General . 144

Directives, Network . 145

Directives, Power fail . 146

Disclaimer . 110, 186

dumb, Cables . 119

dumb, configuration . 39

E
EEPROM directives . 151

eeprom, apcaccess . 57

eeprom, apctest. 67

eeprom, configuring . 66

Email . 110

Event handling . 82

Events . 58

Example, CGI . 64

Example, dumb conf . 39

Example, Master conf . 39

Example, NIS slave . 41

Example, Slave conf. 40

Example, SmartUPS conf . 38

Example, USB conf . 38

Examples, Configuration . 38

Examples, Status Report . 154

F
FAQ . 76

FreeBSD . 28

G
General Directives . 144

H
hid-ups . 16, 58

HPUX . 29

Index 207

I
Installation, After installing 35
Installation, Planning . 6
Installation, Windows . 100
Installing. 20
Installing, Microsoft. 20
Installing, Red Hat . 20
Installing, Source . 22

K
Kernel config . 187
Keywords, USBTYPE . 7

L
Logging Status . 159
Logging, DATA . 143
Logging, directives . 148
Logging, Status . 154
Logging, System . 98
Logging, Testing . 44
Logging, types . 98

M
Maintenance . 70
Master, config example . 39
Master/Slave . 86
Master/Slave variation . 41
Monitoring . 55, 58
multimon . 61

N
Net driver . 86
NetBSD . 29
Network directives . 145
Network Information Server 59
Network monitoring . 58
New Features . 1
NIS . 59
NIS alternate was of running 95
NIS networking . 86
NIS slave conf . 41
Notification . 58
Notification, Email. 110

O
OpenBSD . 29
options, —enable-cgi . 24
options, —enable-powerflute 24
options, —prefix . 23
options, —sbindir . 23
options, configure . 23
OS, Alpha . 28

OS, Debian. 28

OS, FreeBSD . 28

OS, HPUX . 29

OS, NetBSD . 29

OS, OpenBSD . 29

OS, Red Hat . 29

OS, Slackware . 29

OS, Solaris . 30

OS, SuSE . 30

OS, Unknown System . 33

OS, Windows . 33

OSes . 27

OSes Supported . 7

P
Planning Installation . 6

Power down test . 49

Power down, Windows . 112

Power fail directives. 146

Power up, reboot . 35

Problems . 53

Problems, killpower . 53

Problems, lock file not cleaned up 53

Problems, Master/slave . 86

Problems, Master/Slave . 87

Problems, networking . 87

Problems, no Battery charge 53

Problems, Power off . 53

Problems, reconnect . 53

Problems, Serial . 140

Problems, USB . 12, 53

Problems, Windows . 109

Process Status Testing . 43

Protocol Smart . 165

Q
Quick Start . 6

R
Reboot on power up . 35

Recalibration Runtime . 141

Red Hat . 29

Reference, Directives . 144

Release Notes . 1

Report, Status. 154

Runtime recalibration . 141

Index 208

S
Serial on USB . 115
Serial Problems . 140
Serial UPSes . 114
Serial, Testing . 135
Setup CGI programs . 59
Shutdown Sequence . 50, 160
Simulate Power Fail Test . 47
Slackware . 29
Slave Configuration . 40
Smart Custom Cable . 117
Smart protocol . 165
SmartUPS configuration. 38
SNMP . 93
SNMP, Connecting . 93
Solaris . 30
Startup . 163
Status . 154, 156
Status logging . 154
Status Report . 154
status, apcaccess . 55
Status, Logging . 159
Sun . 30
Supported OSes . 7
SuSE . 30
System Logging. 98
System Shutdown test . 49

T
TCP wrappers . 66
Technical Reference . 143
Testing . 43, 138, 139, 140
Testing CGI programs . 59
Testing, apcaccess . 44
Testing, Communications . 47
Testing, Logging . 44
Testing, Power down . 49
Testing, Process Status . 43
Testing, Serial . 135
Testing, Simulate Power Fail 47
Testing, System Shutdown . 49

Testing, Windows . 106
Testing, with apctest . 137
Tip . 65
Troubleshooting (see problems) 53
Tuning . 55
Two apcupsds . 91

U
Unknown System . 33
Upgrading Windows . 106
upsfstatus . 63
upssstats . 63
upsstats . 62
UPSTYPE . 7
UPSTYPE, table . 8
USB problems . 12
USB, configuration. 38
User’s Guide . 5
Using this Manual . 5

V
Verifying Source . 22
Voltage Signalling, Cables 122

W
Windows . 33, 130
Windows Considerations . 164
Windows, Building. 113
Windows, Installation . 100
Windows, Installation Directory 106
Windows, Killpower . 111
Windows, Options . 112
Windows, Post Installation 108
Windows, Power down . 112
Windows, Problems . 109
Windows, Testing . 106
Windows, Upgrading . 106
Wrappers, TCP. 66

	

