How to use SDL_bgi in Python programs

Please make sure that you installed the SDL_bgi binaries for your platform, as de-
scribed in INSTALL_Python.md, before proceeding.

Implementation Details

SDL_bgi is written in C, and its Python bindings are implemented via the ctypes
library. In general:

« functions in Python have the same name as their C counterparts;
« constants and enums are implemented as variables;
« standard C types (int, float, char *, etc.) are mapped to Python types;

« structs are available as ctypes classes that have the same name and field names.
For example:

C struct Python class

struct arccoordstype { class arccoordstype (Structure):
int x; _fields_ = [("x", c_int),
int y; ("y", c_int),
int xstart; ("xstart", c_int)
int ystart; ("ystart", c_int)
int xend; ("xend", c_int),
int yend; ("yend", c_int)]

};

There are minor differences explained below.

Syntax differences

ctypes implements new types that are mapped to equivalent Python types; for exam-
ple, c_int is equivalent to int. Please refer to ctypes’ Reference.

2D arrays can be implemented via Numpy; please see for example demo/1ife.py or
demo/buffers_numpy.py. Strictly speaking, Numpy is not required; but working
with arrays without it is a pain.

Memory buffers, used for example by getimage () or getbuffer(), are implemented
using function create_string_buffer().

The byref () function can be used to pass variables by reference, as in the following
functions:

void detectgraph (int *graphdriver, int *graphmode) ;

graphdriver, graphmode = c_int (), c_int ()

detectgraph (byref (graphdriver), byref (graphmode))

print ("graphdriver, graphmode: ", graphdriver.value, graphmode.value)

https://docs.python.org/3/library/ctypes.html
https://docs.python.org/3/library/ctypes.html#fundamental-data-types
https://numpy.org/

void getarccoords (struct arccoordstype *arccoords);

ac = arccoordstype ()

getarccoords (byref (ac))

print ("x, y, xstart, ystart, xend, yend: ", ac.x, ac.y,
ac.xstart, ac.ystart, ac.xend, ac.yend)

void getaspectratio (int *xasp, int *yasp);
xasp, yasp = c_int (), c_int ()

getaspectratio (byref (xasp), byref (yasp))
print ("xasp, yasp: ", xasp.value, yasp.value)

void getfillsettings (struct fillsettingstype *fillinfo);
fillinfo = fillsettingstype ()

getfillsettings (byref (fillinfo))

print ("pattern, color: ", fillinfo.pattern, fillinfo.color)
void getimage ()

isize = imagesize (0, O, len, 16)

image = create_string_buffer (isize)

getimage (0, O, len, 16, image)

void getlinesettings (struct linesettingstype *lineinfo);
lineinfo = linesettingstype ()

getlinesettings (byref (lineinfo))

print ("linestyle, thickness: ", ls.linestyle, ls.thickness)

void getmoderange (int graphdriver, int *lomode, int *himode);
lomode, himode = c_int (), c_int ()

getmoderange (0, byref (lomode), byref (himode))

print ("lomode, himode: ", lomode.value, lomode.value)
void getmouseclick (int btn, int *x, int *y);

kind, x, y = c_int (), c_int (), c_int ()
getmouseclick (kind, byref (x), byref (y))

print ("mouse x, mouse y: ", x.value, y.value)

void getscreensize (int x, int y);
x, y = c_int (), c_int ()
getscreensize (byref (x), byref (y))
print ("size x, size y: ", x, y)

Pythonic Syntax

The following functions provide a more Pytonic syntax that only uses standard Python
types:
void detectgraph (int *graphdriver, int *graphmode) ;

graphdriver, graphmode = detectgraph ()
print ("graphdriver, graphmode: ", graphdriver, graphmode);

void getarccoords (struct arccoordstype *arccoords);
ac = arccoordstype ()
ac = getarccoords ()

print ("x, y, xstart, ystart, xend, yend: "

, ac.x, ac.y,
ac.xstart, ac.ystart, ac.xend, ac.yend)

void getaspectratio (int *xasp, int *yasp);
xasp, yasp = getaspectratio ()
print ("xasp, yasp: ", xasp, yasp)

void getfillsettings (struct fillsettingstype *fillinfo);
fs = fillsettingstype ()

fs = getfillsettings ()

print ("pattern, color: ", fs.pattern, fs.color)

void getlinesettings (struct linesettingstype *lineinfo);
1ls = linesettingstype ()
1ls = getlinesettings ()
print ("linestyle, thickness: ", ls.linestyle, ls.thickness)

void getmoderange (int graphdriver, int *lomode, int *himode);
lomode, himode = getmoderange ()
print ("lomode, himode: ", lomode, lomode)

void getmouseclick (int btn, int *x, int *y);
X, y = getmouseclick (WM_LBUTTONDQOWN)

print ("mouse x, mouse y: ", x, y)

void getscreensize (int x, int y);
X, y = getscreensize ()
print ("size x, size y: ", x, y)

void initgraph (int *graphdriver, int *graphmode, char #*pathtodriver)
initgraph ()

Helper Functions
The following functions can be useful:

list2vec (list): converts a Python list of integers to a vector; used for example
by drawpoly ()

vec2buf (vector): returns a string buffer that contains the values stored in vector.
This is a 1-dimensional array that can be obtained from a Numpy 2D array ‘matrix’
with reshape (matrix, -1).

sizeofint (): equivalent to C sizeof (int). Please note that this is not the same
as sys.getsizeof ()!

Missing Features

SDL2-based variables bgi_window, bgi_renderer, bgi_texture, PALETTE_SIZE,
and function copysurface() are not available.

Speeding Things Up

Python is an interpreted language, and its performance is quite poor if compared to
compiled code. The PyPy interpreter should make Python code run faster, but SDL_bgi
programs run much slower with PyPy than with CPython. Another Python implemen-
tation, Pyston, actually runs SDL_bgi programs definitely faster than CPython.

To give your programs a real boost, I strongly suggest that module Numba be used.
Numba is a high performance Python JIT compiler that can translate a large subset of
Python and NumPy code into fast machine code. It uses simple function decorators;
please have a look at demo/mandelbrot.py to see how it works.

Making Standalone Binaries

To deploy a Python program as a standalone executable file, you may use PylInstaller
or Nuitka.

Pyinstaller
Run it as in the following example:

test$ pyinstaller -F fern.py
121 INFO: PyInstaller: 5.4.1
121 INFO: Python: 3.10.4

7373 INFO: Building EXE from EXE-00.toc completed successfully.
test$ _

The resulting executable will be created in directory dist/.

Nuitka
Run it as in the following example:

test$ nuitka3 --onefile --remove-output fern.py

Nuitka-Options:INFO: Used command line options: --onefile \
--remove-output fern.py

Nuitka:INFQO: Starting Python compilation with Nuitka '1.1.3' \
on Python '3.10' commercial grade 'not installed'.

Nuitka:INFO: Successfully created 'fern.bin'.
test$ _

https://www.pypy.org
https://www.pyston.org
https://numba.pydata.org/
https://pyinstaller.org
https://nuitka.net/

When run on Windows, you get fern.exe and fern.cmd, which is a batch file that

sets up the proper runtime environment for the executable. Run fern. cmd to start
the program; on MSYS2, use:

test$ start fern.cmd

On my GNU/Linux Mint 20.2 box, Nuitka creates a much smaller executable than
Pyinstaller does.

	How to use SDL_bgi in Python programs
	Implementation Details
	Syntax differences
	Pythonic Syntax
	Helper Functions
	Missing Features
	Speeding Things Up
	Making Standalone Binaries
	Pyinstaller
	Nuitka

